• 제목/요약/키워드: Fuzzy systems modeling

검색결과 426건 처리시간 0.026초

연판 지식을 이용한 유전자 발현 데이터 분석: 퍼지 플러스링과 조절 네트웍 모델링에의 응용 (In-silico inferences for expression data using IGAM: Applied to Fuzzy-Clustering & Regulatory Network Modeling)

  • Lee, Philhyone;Hojeong Nam;Lee, Doheon;Lee, Kwang H.
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2004년도 춘계학술대회 학술발표 논문집 제14권 제1호
    • /
    • pp.273-276
    • /
    • 2004
  • Genome-scale expression data provides us with valuable insights about organisms, but the biological validation of in-silico analysis is difficult and often controversial. Here we present a new approach for integrating previously established knowledge with computational analysis. Based on the known biological evidences, IGAM (Integrated Gene Association Matrix) automatically estimates the relatedness between a pair of genes. We combined this association knowledge to the regulatory network modeling and fuzzy clustering in yeast 5. Cerevisiae. The result was found to be more effective for extracting biological meanings from in-silico inferences for gene expression data.

  • PDF

시간지연을 갖는 네트워크 제어 시스템의 지능형 제어기 설계 (Intelligent Controller for Networked Control Systems with Time-delay)

  • 배기선;주영훈
    • 제어로봇시스템학회논문지
    • /
    • 제17권2호
    • /
    • pp.139-144
    • /
    • 2011
  • We consider the stabilization problem for a class of networked control systems with random delays in the discrete-time domain. The controller-to-actuator and sensor-to-controller time-delays are modeled as two Markov chains, and the resulting closed-loop systems are Markovian jump nonlinear systems with two modes. The T-S (Takagi-Sugeno) fuzzy model is employed to represent a nonlinear system with Markovian jump parameters. The aim is to design a fuzzy controller such that the closed-loop Markovian jump fuzzy system is stochastically stable. The necessary and sufficient conditions on the existence of stabilizing fuzzy controllers are established in terms of LMIs (Linear Matrix Inequalities). It is shown that fuzzy controller gains are mode-dependent. Finally, a simulation example is presented to illustrate the effectiveness of the proposed design method.

Genetically Optimized Hybrid Fuzzy Set-based Polynomial Neural Networks with Polynomial and Fuzzy Polynomial Neurons

  • Oh Sung-Kwun;Roh Seok-Beom;Park Keon-Jun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제5권4호
    • /
    • pp.327-332
    • /
    • 2005
  • We investigatea new fuzzy-neural networks-Hybrid Fuzzy set based polynomial Neural Networks (HFSPNN). These networks consist of genetically optimized multi-layer with two kinds of heterogeneous neurons thatare fuzzy set based polynomial neurons (FSPNs) and polynomial neurons (PNs). We have developed a comprehensive design methodology to determine the optimal structure of networks dynamically. The augmented genetically optimized HFSPNN (namely gHFSPNN) results in a structurally optimized structure and comes with a higher level of flexibility in comparison to the one we encounter in the conventional HFPNN. The GA-based design procedure being applied at each layer of gHFSPNN leads to the selection leads to the selection of preferred nodes (FSPNs or PNs) available within the HFSPNN. In the sequel, the structural optimization is realized via GAs, whereas the ensuing detailed parametric optimization is carried out in the setting of a standard least square method-based learning. The performance of the gHFSPNN is quantified through experimentation where we use a number of modeling benchmarks synthetic and experimental data already experimented with in fuzzy or neurofuzzy modeling.

A Study on the Fuzzy Control in the Modeling Equipment of the Height-level of Water by the Personal Computer

  • Munakata, Tsunehiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.93.6-93
    • /
    • 2001
  • This paper describes the results on the fuzzy control in the modeling equipment of the height-level of water, in comparison with the results of PID control in the same system. By using two types of the fuzzy control, it is reported that the response rapidity, smoothness and complexity of the fuzzy control are superior to PID control by the experiment results.

  • PDF

비선형 시스템의 이원적 합성 적응 퍼지 제어 (Composite Adaptive Dual Fuzzy Control of Nonlinear Systems)

  • Kim, Sung-Wan;Kim, Euntai;Park, Mignon
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 추계 학술대회 학술발표 논문집
    • /
    • pp.141-144
    • /
    • 2003
  • A composite adaptive dual fuzzy controller combining the approximate mathematical model, linguistic model description, linguistic control rules and identification modeling error into a single adaptive fuzzy controller is developed for a nonlinear system. It ensures the system output tracks the desired reference value and excites the plant sufficiently for accelerating the parameter estimation process so that the control performances are greatly improved. Using the Lyapunov synthesis approach, proposed controller is analyzed and simulation results verify the effectiveness of the proposed control algorithm.

  • PDF

Fuzzy Identification by Means of an Auto-Tuning Algorithm and a Weighted Performance Index

  • 오성권
    • 한국지능시스템학회논문지
    • /
    • 제8권6호
    • /
    • pp.106-118
    • /
    • 1998
  • The study concerns a design procedure of rule-based systems. The proposed rule-based fuzzy modeling implements system structure and parameter identification in the efficient from of "IF..., THEN..." statements, and exploits the theory of system optimization and fuzzy implication rules. The method for rule-based fuzzy modeling concerns the from of the conclusion part of the the rules that can be constant. Both triangular and Gaussian-like membership function are studied. The optimization hinges on an autotuning algorithm that covers as a modified constrained optimization method known as a complex method. The study introduces a weighted performance index (objective function) that helps achieve a sound balance between the quality of results produced for the training and testing set. This methodology sheds light on the role and impact of different parameters of the model on its performance. The study is illustrated with the aid of two representative numerical examples.

  • PDF

클러스터링에 기초한 자기부상시스템의 퍼지제어기 모델링 (Fuzzy Controller Modeling for Electromagnetic Levitation Systems based on Clustering Algorithm)

  • 김민수;변윤섭;이관섭
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2006년도 추계학술대회 특별세미나 특별세션
    • /
    • pp.145-159
    • /
    • 2006
  • This paper describes the development of a clustering based fuzzy controller of an electromagnetic suspension vehicle using gain scheduling method and Kalman filter for a simplified single magnet system. Electromagnetic suspension vehicle systems are highly nonlinear and essentially unstable systems For achieving the levitation control of the DC electromagnetic suspension system, we considered a fuzzy system modeling method based on clustering algorithm which a set of input/output data is collected from the well defined Linear Quadratic Gaussian(LQG) controller. Simulation results show that the proposed clustering based fuzzy controller methodology robustly yields uniform performance with adequate gap response over the mass variation range.

  • PDF

Type-2와 Type-1 TSK FLS의 비교 연구 (Comparative Study on Type-2 and Type-1 TSK FLS.)

  • 지광희;오성권
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국지능시스템학회 2008년도 춘계학술대회 학술발표회 논문집
    • /
    • pp.321-324
    • /
    • 2008
  • Type-2 퍼지 집합은 Type-1 퍼지 집합에서는 다루기 어려운 언어적인 불확실성을 더욱 효과적으로 다룰 수 있다. TSK 퍼지 로직 시스템(TSK Fuzzy Logic Systems; TSK FLS)은 Mamdani 모델과 함께 가장 널리 사용되는 FLS이다. 본 연구의 Interval Type-2 TSK FLS 모델은 전반부에서 Type-2 퍼지 집합을 이용하고 후반부는 계수가 상수인 1차식을 사용한다. 전반부의 파라미터는 오류역전파 방법(Back-propagation)을 통한 학습으로 결정되고, 후반부 파라미터(계수)들은 Least squre method(LSM)를 사용하여 결정된 값을 사용하여 모델을 구축한다. 본 논문에서는 Type-1 TSK FLS과 Type-2 TSK FLS의 성능을 가스로 공정 데이터를 적용하여 비교 분석한다. 또한 랜덤 화이트 가우시안 노이즈를 추가한 테스트 데이터를 사용하여 노이즈에 대한 성능을 분석한다.

  • PDF

다항식 Type-2 TSK FLS 구조;설계 및 분석 (Polynomial Type-2 TSK FLS Architecture;Design and Analysis)

  • 김길성;오성권
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국지능시스템학회 2008년도 춘계학술대회 학술발표회 논문집
    • /
    • pp.329-332
    • /
    • 2008
  • Type-2 퍼지 집합은 언어적인 불확실성을 다루기 위하여 Zadeh에 의해 제안되었고 Mendel과 Kamik에 의해 이론이 체계화 되었다. TSK 퍼지 로직 시스템(TSK Fuzzy Logic Systems; TSK FLS)은 Mamdni 모델과 함께 가장 널리 사용되는 퍼지 로직 시스템이다. 본 논문에서는 Type-2 퍼지 집합을 이용하여 전반부 멤버쉽 함수를 구성하고 후반부 다항식 함수를 상수와 1차식, 2차식으로 확장한 다항식 Type-2 TSK FLS 설계한다. 또한 가스로 공정 데이터에 응용하여 후반부 다항식의 변화에 따른 Type-2 TSK FLS의 특징을 비교 분석 할 뿐 만 아니라 테스트 데이터에 노이즈를 첨가하여 노이즈에 따른 Type-l TSK FLS과 Type-2 TSK FLS의 특성을 분석한다.

  • PDF

퍼지 이산사건 시스템의 모델링과 응용 (Modeling of The Fuzzy Discrete Event System and It s Application)

  • 김진권;김정철;황형수
    • 한국지능시스템학회논문지
    • /
    • 제14권4호
    • /
    • pp.487-492
    • /
    • 2004
  • 본 논문은 Crisp Discrete Event System(CDES)에서 다룰 수 없는 특성을 가지는 의료진단이나 교통제어와 같이 애매하거나 불확실한 판단 그리고 관련성이 모호한 판단의 근거들에 의해 결정되어지는 사건들로 이루어진 Fuzzy Discrete Event System(FDES)의 모델링 방법과 그 응용에 대하여 연구하였다. 일반적인 CDES는 모델링 방법이 많이 연구되어져 왔으나, FDES는 발생되어지는 사건들의 정성적인 특성과 적용되어지는 경우가 드문 이유로 거의 연구되어져 있지 않다. 본 논문에서는 Fuzzy Timed Transition Petri Net(FTTPN)으로 FDES인 교통 시스템을 모델링하고 교통 신호제어기를 설계하였다.