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In-silico inferences for expression data using IGAM

: Applied to Fuzzy-Clustering & Regulatory Network Modeling

Philhyoun Lee, Hojeong Nam, Doheon Lee*, Kwang H. Lee
Department of BioSystems, KAIST, 373-1, Daejeon, 305-701, Korea

ABSTRACT

Genome-scale expression data provides us with valuable insights about organisms, but the
biological validation of in-silico analysis is difficult and often controversial. Here we present a
new approach for integrating previously established knowledge with computational analysis.
Based on the known biological evidences, IGAM (Integrated Gene Association Matrix)
automatically estimates the relatedness between a pair of genes. We combined this association
knowledge to the regulatory network modeling and fuzzy clustering in yeast S.Cerevisiae. The
result was found to be more effective for extracting biological meanings from in-silico

inferences for gene expression data.
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I. INTRODUCTION

Inferring principles of regulation from
genome-scale expression data is a huge
challenge. Furthermore, due to the absence
of standard validation method, researchers
have found it difficult to demonstrate the
validity of their inferences. Most researchers
have used cross-validation methods or
to justify their
approaches [E. Segal et al., 2003., V. Anne
Smith et al. 2002}. Verification methods

devised for one specific experiment are ill-

simulation techniques

273

suited for other problems, and even when
applied to the same problem, different
methods sometimes lead to contradicting
exhaustive search of

results. Besides,

and annotation databases to

their

literatures

corroborate own results is time
consuming and tedious. In this paper, we
present a universal and consistent approach
to measure the association degree of two
genes. The proposed metric is devised under
the assumption that related genes share their
intrinsic features more often than non-

related ones. We calculate the genetic
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Fig. 1. the number of distinct S.Cerevisiae genes with annotation in each biological domain.

(inset: the number of distinct gene pairs of S.Cerevisiae related with each other)

interaction or regulation by examining the
tendency of coexistence of their established
known properties. To overcome the limited
coverage of a specific knowledge domain
(Fig.1),

biological

we coherently use multiple

the

association score based on the statistical

evidences. Measuring
framework enables us to use one metric for
heterogeneous data.

ii. METHODS

Data
We downloaded the SGD GO annotations
from http://www.yeastgenome.org. Enzyme
Classification and Pathway information was
downloaded from http:// www.genome.ad jp
Motif data
http://www.expasy.ch/prosite.

from
MIPS

functional category, complex, phenotype,

and

subcellular annotations are available at
http://mips.gst.de/proj/yeast/catalogues/phen
otype. S.Cerevisiae cell-cyle expression data
was downloaded from http://celicycle-

www.stanford.edw/ for fuzzy C-means

clustering.
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Integrated Gene Association Matrix

LetG,={g1, 82, ....,gu} and F, = {f;, 5, ...,
fy} be a set of genes and a set of features in
the p
respectively. Let N(f;) be the number of
., fis}

be a set of features that a gene g; may have.

biological knowledge domain

genes with a feature f;. Let Fy,; = {fy;, ..

The association score of every gene pair 1s
defined as follows:

SCOIC(gi, gj) = Spositive(gi, g;) + Snegative(gi, gj)

Sposiuve(gi &) = - (Y. logs(gi g f))

Jme FpiFpj
1= 2CON(fy -1
Snega(ive(gi, gj) = log (1+ Z —_—)
by CNGD
v - 2CN(fu) - 2
where s(gi, g fr) = LN 2
(CN ()

The association score satisfies the following
two criteria:

i. If N(fp) > N(f),

(fr e FuNFEy; fie FuNE,)
then s(g;, g; fr) > s(gw g, fo)-

ii. I 1 Fpi N Fyyll = 1l B N Fyll,
( i € Fp,' N ij‘ fie Fqk n Fq[) and
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Fig. 2: Eleven IGAM score components based on each biological domain. x, y, z axes represent the first gene

and the second of related gene pairs, and their association score respectively.

N(fi) = N(f) and at least one knowledge domain. Gene pairs
Gyl > Gy I, connected only in one knowledge domain
then Score(g;, g;) > Score(gx, g1)- include EST1 and ZDS2, PCL1 and PDSS,

and SKN1 and BUBI1. This shows that
IGAM can recover subtle and hard-to-find

biological associations. Gene pairs indirectly

The test of homogeneity with statistic x*
((r-1)(c-1)) (=20, ¢=20, a=0.01) was

performed to confirm that each biological .
connected by mediators were also recovered

id categorizes  th lati
_CVI ence gon ¢ . Popu ation as well as direct relationships. The
independently. To test the validity of our Lo .
indirectly-linked are represented by blue and

association assessment, we created random ) ) )
subjected to further studies for hidden

feature data sets. Distributions obtained

t een m. Remaini 4
from random sets have shapes and ranges of elements - betw the emaining 1

score distribution distinct from those of edges are putative candidates of literature

genuine sets, as illustrated in Fig. 2. search and wet-experiments to determine
whether they represent novel interactions. In
fig. 3, we can easily recognize that
predictions like HSL1 and SWEI1 are highly

reliable even without referring to the

We applied IGAM for the analysis of genetic ~ detailed annotation; HSL1 is a negative

regulation network modeling [Satoru  regulator of SWEI kinase.

I1l. RESULTS

Miyano et al., 2002]. Total 82 edges were Fuzzy C-means clustering with IGAM is
examined for their degree of association. ~ Performed with fuzzy parameters m=1.17, p
Directly linked genes are marked with = 045 and Pearson’s correlation as a
different shades of grey indicating 4 distance metric [Doulaye Dembele et al.
different ranges of association scores (Fig. ~ 2003]. The coverage and performance of

3). 68 edges were revealed to be supported functional significance analysis was much
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Fig 3. IGAM (Integrated Gene Association Metric) analysis result for genetic regulatory network

higher than that of evaluators based on a
single evidence. Supplementary data 1is
available at http://bioif kaist.ac.kr/IGAM/.

IV. CONCLUSIONS

We aim to devise a generic and efficient

methodology for integrating previous
biological knowledge with gene expression
data analysis. The novel feature of the
proposed method is that the true positive
inference can be easily differentiated from
candidates for further investigation based on
heterogeneous evidences. In addition, the
sensitivity and specificity of inference can
be intuitively visualized with a color map.
The evaluation of regulatory network
modeling and clustering results clearly
demonstrates these advantages.

An extension to the evaluation of context-
specific association beyond a pair-wise one
is under consideration. Other domains of
biological knowledge such as protein-
interaction data, phylogenetic profiles, and
sequence similarity will be integrated for

IGAM.
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