• Title/Summary/Keyword: Fuzzy multi-model

Search Result 246, Processing Time 0.033 seconds

Identification of Multi-Fuzzy Model by means of HCM Clustering and Genetic Algorithms (HCM 클러스터링과 유전자 알고리즘을 이용한 다중 퍼지 모델 동정)

  • 박호성;오성권
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.370-370
    • /
    • 2000
  • In this paper, we design a Multi-Fuzzy model by means of HCM clustering and genetic algorithms for a nonlinear system. In order to determine structure of the proposed Multi-Fuzzy model, HCM clustering method is used. The parameters of membership function of the Multi-Fuzzy ate identified by genetic algorithms. A aggregate performance index with a weighting factor is used to achieve a sound balance between approximation and generalization abilities of the model. We use simplified inference and linear inference as inference method of the proposed Multi-Fuzzy mode] and the standard least square method for estimating consequence parameters of the Multi-Fuzzy. Finally, we use some of numerical data to evaluate the proposed Multi-Fuzzy model and discuss about the usefulness.

  • PDF

The optimal identification of nonlinear systems by means of Multi-Fuzzy Inference model (다중 퍼지 추론 모델에 의한 비선형 시스템의 최적 동정)

  • Jeong, Hoe-Yeol;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2669-2671
    • /
    • 2001
  • In this paper, we propose design a Multi-Fuzzy Inference model structure. In order to determine structure of the proposed Multi-Fuzzy Inference model, HCM clustering method is used. The parameters of membership function of the Multi-Fuzzy are identified by genetic algorithms. A aggregate performance index with a weighting factor is used to achieve a sound balance between approximation and generalization abilities of the model. We use simplified inference and linear inference as inference method of the proposed Multi-Fuzzy model and the standard least square method for estimating consequence parameters of the Multi-Fuzzy. Finally, we use some of numerical data to evaluate the proposed Multi-Fuzzy model and discuss about the usefulness.

  • PDF

The Identification of Multi-Fuzzy Model by means of HCM and Genetic Algorithms (클러스터링 기법과 유전자 알고리즘에 의한 다중 퍼지 모델으 동정)

  • Park, Byoun-Jun;Lee, Su-Gu;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.3007-3009
    • /
    • 2000
  • In this paper, we design a Multi-Fuzzy model by means of clustering method and genetic algorithms for a nonlinear system. In order to determine structure of the proposed Multi-Fuzzy model. HCM clustering method is used. The parameters of membership function of the Multi-Fuzzy are identified by genetic algorithms. We use simplified inference and linear inference as inference method of the proposed Multi-Fuzzy model and the standard least square method for estimating consequence parameters of the Multi-Fuzzy. Finally, we use some of numerical data to evaluate the proposed Multi-Fuzzy model and discuss about the usefulness.

  • PDF

Fuzzy Formation Controlling Phugoid Model-Based Multi-Agent Systems (장주기모델로 구성된 다개체시스템의 퍼지 군집제어)

  • Moon, Ji Hyun;Lee, Jaejun;Lee, Ho Jae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.7
    • /
    • pp.508-512
    • /
    • 2016
  • This paper discusses a Takagi-Sugeno (T-S) fuzzy controller design problem for a phugoid model-based multi-agent system. The error between the state of a phugoid model and a reference is defined to construct a multi-agent system model. A T-S fuzzy model of the multi-agent system is built by introducing a nonlinear controller. A fuzzy controller is then designed to stabilize the T-S fuzzy model, where the synthesis condition is represented in terms of linear matrix inequalities.

Fuzzy programming for improving redundancy-reliability allocation problems in series-parallel systems

  • Liu, C.M.;Li, J.L.
    • International Journal of Reliability and Applications
    • /
    • v.12 no.2
    • /
    • pp.79-94
    • /
    • 2011
  • Redundancy-reliability allocation problems in multi-stage series-parallel systems are addressed in this study. Fuzzy programming techniques are proposed for finding satisfactory solutions. First, a multi-objective programming model is formulated for simultaneously maximizing system reliability and minimizing system total cost. Due to the nature of uncertainty in the problem, the fuzzy set theory and technique are used to convert the deterministic multi-objective programming model into a fuzzy nonlinear programming problem. A heuristic method is developed to get satisfactory solutions for the fuzzy nonlinear programming problem. A Pareto optimal solution is found with maximal degree of satisfaction from the interception area of fuzzy sets. A case study that is related to the electronic control unit installed on aircraft engine over-speed protection system is used to implement the developed approach. Results suggest that the developed fuzzy multi-objective programming model can effectively resolve the fuzzy and uncertain problem when design goals and constraints are not clearly confirmed at the initial conceptual design phase.

  • PDF

Multi-variable Fuzzy Modeling for Combustion Control of Refuse Incineration Plant (쓰레기 소각 플랜트 연소 제어를 위한 다변수 퍼지 모델링)

  • Park, Jong-Jin;Choi, Gyoo-Seok;Ahn, Ihn-Seok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.5
    • /
    • pp.191-197
    • /
    • 2009
  • In this paper, multi-variable fuzzy model for efficient combustion control of refuse incineration plant is obtained. First, to obtain model of incineration plant which is complex and nonlinear multi-variable fuzzy modeling is performed. Obtained multi-variable fuzzy model predicts outputs of incinerator almost exactly. Then using multi-variable fuzzy model we can build simulator which is used as operation simulator for building of control strategy and training of operator.

  • PDF

Missile Adaptive Control using T-S Fuzzy Model (T-S 퍼지 모델을 이용한 유도탄 적응 제어)

  • 윤한진;박창우;박민용
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.129-132
    • /
    • 2001
  • In this paper, in order to control uncertain missile autopilot, an adaptive fuzzy control(AEC) scheme via parallel distributed compensation(PDC) is developed for the multi-input/multi-output plants represented by the Takagi-Sugeno(T-S) fuzzy model. Moreover adaptive law is designed so that the plant output tracks the stable reference model(SRM), From the simulations results, we can conclude that the suggested scheme can effectively solve the control problems of uncertain missile systems based on T-S fuzzy model.

  • PDF

A Multi-Objective Loading Model in a Flexible Manufacturing System Under Fuzzy Environment (퍼지 환경하에 FMS의 다목적 작업할당 모델)

  • 남궁석;이상용
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.18 no.33
    • /
    • pp.79-86
    • /
    • 1995
  • This paper intends to develope the multi-objective loading model in a flexible manufacturing system (FMS) to support decision maker under fuzzy environment. To obtain the optimal solution, this paper uses interactive fuzzy multi-objective linear programing(IFMOLP) and describes the process of optimal solution. As a case study, numerical examples are demonstrated to show the effectiveness of the proposed model.

  • PDF

Multi-FNN Identification Based on HCM Clustering and Evolutionary Fuzzy Granulation

  • Park, Ho-Sung;Oh, Sung-Kwun
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.2
    • /
    • pp.194-202
    • /
    • 2003
  • In this paper, we introduce a category of Multi-FNN (Fuzzy-Neural Networks) models, analyze the underlying architectures and propose a comprehensive identification framework. The proposed Multi-FNNs dwell on a concept of fuzzy rule-based FNNs based on HCM clustering and evolutionary fuzzy granulation, and exploit linear inference being treated as a generic inference mechanism. By this nature, this FNN model is geared toward capturing relationships between information granules known as fuzzy sets. The form of the information granules themselves (in particular their distribution and a type of membership function) becomes an important design feature of the FNN model contributing to its structural as well as parametric optimization. The identification environment uses clustering techniques (Hard C - Means, HCM) and exploits genetic optimization as a vehicle of global optimization. The global optimization is augmented by more refined gradient-based learning mechanisms such as standard back-propagation. The HCM algorithm, whose role is to carry out preprocessing of the process data for system modeling, is utilized to determine the structure of Multi-FNNs. The detailed parameters of the Multi-FNN (such as apexes of membership functions, learning rates and momentum coefficients) are adjusted using genetic algorithms. An aggregate performance index with a weighting factor is proposed in order to achieve a sound balance between approximation and generalization (predictive) abilities of the model. To evaluate the performance of the proposed model, two numeric data sets are experimented with. One is the numerical data coming from a description of a certain nonlinear function and the other is NOx emission process data from a gas turbine power plant.

T-S Fuzzy Formation Controlling Phugoid Model-Based Multi-Agent Systems in Discrete Time (이산시간에서의 장주기모델에 관한 다개체시스템의 T-S 퍼지 군집제어)

  • Moon, Ji Hyun;Lee, Jaejun;Lee, Ho Jae;Kim, Moon Hwan
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.4
    • /
    • pp.308-315
    • /
    • 2016
  • This paper addresses a formation control problem for a phugoid model-based multi-agent system in discrete time by using a Takagi-Sugeno (T-S) fuzzy model-based controller design technique. The concerned discrete-time model is obtained by Euler's method. A T-S fuzzy model is constructed through a feedback linearization. A fuzzy controller is then designed to stabilize the T-S fuzzy model. Design condition is presented in the linear matrix inequality format.