• Title/Summary/Keyword: Fuzzy model

Search Result 2,834, Processing Time 0.032 seconds

An Adaptive Fuzzy Controller Using Fuzzy Nerual Networks

  • Takeshi-Furuhashi;Takashi-Hasegawa;Horikawa, Shin-ichi;Yoshiki-Uchikawa
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.769-772
    • /
    • 1993
  • This paper presents and adaptive fuzzy controller using fuzzy neural networks(FNNs). The adaptive controller uses two FNNs. One FNN is used to identify a fuzzy model of controlled object. The other FNN is used as a fuzzy controller. The fuzzy controller is designed with the linguistic rules of the fuzzy model. The response of the designed control system is checked with a linguistic response analysis proposed by the authors. An adaptive tuning of the control rules of the FNN controller is made possible utilizing the fuzzy model. Simulations using nonlinear controlled objects were done to verify the proposed control system.

  • PDF

Continuous-time fuzzy modelling of nonlinear systems using genetic algorithms (유전알고리즘을 이용한 비선형시스템의 연속시간 퍼지모델링)

  • 이현식;진강규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1473-1476
    • /
    • 1997
  • This paper presents a scheme for continuous-time fuzzy modelling of nonlinear systems, based on the adjustment technique and the genetic algorithm technque. The fuzzy model is characterized by fuzzy "If-then" rules whcih represent locally linear input-output relations whose consequence part is defined as subsystem of a nonlinear system. To compute the final output and deal with the initialization and unmeasurable signal problems in on-line estimatio of the fuzzy model, a discrete-time model is obtaned. Then the parameters of both the premis and consequence of the fuzzy model are adjusted on-line by a genetic algorithm. A simulation work is carried out to demonstrate the effectiveness of the proposed method.ed method.

  • PDF

Design of an Adaptive Fuzzy Controller and Its Application to Controlling Uncertain Chaotic Systems

  • Rark, Chang-woo;Lee, Chang-Hoon;Kim, Jung-Hwan;Kim, Seungho;Park, Mignon
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.2
    • /
    • pp.95-105
    • /
    • 2001
  • In this paper, in order to control uncertain chaotic system, an adaptive fuzzy control(AFC) scheme is developed for the multi-input/multi-output plants represented by the Takagi-Sugeno(T-S) fuzzy models. The proposed AFC scheme provides robust tracking of a desired signal for the T-S fuzzy systems with uncertain parameters. The developed control law and adaptive law guarantee the boundedness of all signals in the closed-loop system. In addition, the chaotic state tracks the state of the stable reference model(SRM) asymptotically with time for any bounded reference input signal. The suggested AFC design technique is applied for the control of an uncertain Lorenz system based on T-S fuzzy model such as stabilization, synchronization and chaotic model following control(CMFC).

  • PDF

Optimal Fuzzy Models with the Aid of SAHN-based Algorithm

  • Lee Jong-Seok;Jang Kyung-Won;Ahn Tae-Chon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.2
    • /
    • pp.138-143
    • /
    • 2006
  • In this paper, we have presented a Sequential Agglomerative Hierarchical Nested (SAHN) algorithm-based data clustering method in fuzzy inference system to achieve optimal performance of fuzzy model. SAHN-based algorithm is used to give possible range of number of clusters with cluster centers for the system identification. The axes of membership functions of this fuzzy model are optimized by using cluster centers obtained from clustering method and the consequence parameters of the fuzzy model are identified by standard least square method. Finally, in this paper, we have observed our model's output performance using the Box and Jenkins's gas furnace data and Sugeno's non-linear process data.

Intelligent Digitally Redesigned Fuzzy Controller

  • Joo, Young-Hoon;Lee, Yeun-Woo;Cha, Dai-Bum;Oh, Jae-Heung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.2 no.3
    • /
    • pp.220-226
    • /
    • 2002
  • In this paper, we develop the intelligent digitally redesigned fuzzy controller for nonlinear systems. Takagi-Sugeno (TS) fuzzy model is used to model the nonlinear systems and a continuous-time fuzzy-model-based controller is designed based on the extended parallel-distributed-compensation(EPDC) method . The digital controllers are determined from existing analogue controllers. The proposed method provides an accurate and effective method for digital control of continuous-time nonlinear systems and enables us to efficiently implement a digital controller via the pre-determined continuous-time 75 fuzzy-model-based controller. We have applied the proposed method to the duffing forced oscillation system to show the effectiveness and feasibility of the proposed method.

The Fuzzy Model-Based-Controller for the Control of SISO Nonlinear System (SISO 비선형 시스템의 제어를 위한 퍼지 모델 기반 제어기)

  • Chang, Wook;Kwon, Ok-Kook;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.528-530
    • /
    • 1998
  • This paper addresses analysis and design of a fuzzy model-based-controller for the control of uncertain SISO nonlinear systems. In the design procedure, we represent the nonlinear system by using a Takagi-Sugeno fuzzy model and construct a global fuzzy logic controller via parallel distributed compensation and sliding mode control. Unlike other parallel distributed controllers. this globally stable fuzzy controller is designed without finding a common positive definite matrix for a set of Lyapunov equations, and has good tracking performance. Furthermore, stability analysis is conducted not for the fuzzy model but for the real underlying nonlinear system. A simulation is included for the control of the Duffing forced-oscillation system, to show the effectiveness and feasibility of the proposed fuzzy control method.

  • PDF

Fuzzy Identification by means of Fuzzy Inference Method and its Optimization by GA (퍼지 추론 방법을 이용한 퍼지 동정과 유전자 알고리즘에 의한 이의 최적화)

  • Park, Byoung-Jun;Park, Chun-Seong;Ahn, Tae-Chon;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.563-565
    • /
    • 1998
  • In this paper, we are proposed optimization method of fuzzy model in order to complex and nonlinear system. In the fuzzy modeling, a premise identification is very important to describe the charateristics of a given unknown system. Then, the proposed fuzzy model implements system structure and parameter identification, using the fuzzy inference method and genetic algorithms. Inference method for fuzzy model presented in our paper include the simplified inference and linear inference. Time series data for gas furance and sewage treatment process are used to evaluate the performance of the proposed model. Also, the performance index with weighted value is proposed to achieve a balance between the results of performance for the training and testing data.

  • PDF

Design of Fuzzy Model Based Controller for Uncertain Nonlinear Systems

  • Wook Chang;Joo, Young-Hoon;Park, Jin-Bae;Guanrong Chen
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.185-189
    • /
    • 1998
  • This paper addresses analysis and design of a fuzzy model-based-controller for the control of uncertain SISO nonlinear systems. In the design procedure, we represent the nonlinear system by using a Takagi-Sugeno fuzzy model and construct a global fuzzy logic controller via parallel distributed compensation and sliding mode control. Unlike other parallel distributed controllers, this globally stable fuzzy controller is designed without finding a common positive definite matrix for a set of Lyapunov equations, and has good tracking performance. The stability analysis is conducted not for the fuzzy model but for the real underlying nonlinear system. Furthermore, the proposed method can be applied to partially known uncertain nonlinear systems. A numerical simulation is performed for the control of an inverted pendulum, to show the effectiveness and feasibility of the proposed fuzzy control method.

  • PDF

Automatic GA fuzzy modeling with fine tuning method

  • Son, You-Seok;Chang, Wook;Park, Jin-Bae;Joo, Young-Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.189-192
    • /
    • 1996
  • This paper presents a systematic approach to identify a linguistic fuzzy model for a multi-input and single-output complex system. Such a model is composed of fuzzy rules, and its output is inferred by the simplified reasoning. The structure and membership function parameters for a fuzzy model are automatically and simultaneously identified by GA (Genetic Algorithm). After GA search, optimal parameters for the fuzzy model are finely tuned by a gradient method. A numerical example is provided to evaluate the feasibility of the proposed approach. Comparison shows that the suggested approach can produce the linguistic fuzzy model with higher accuracy and a smaller number of rules than the ones achieved previously in other methods.

  • PDF

Integrating Fuzzy based Fault diagnosis with Constrained Model Predictive Control for Industrial Applications

  • Mani, Geetha;Sivaraman, Natarajan
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.886-889
    • /
    • 2017
  • An active Fault Tolerant Model Predictive Control (FTMPC) using Fuzzy scheduler is developed. Fault tolerant Control (FTC) system stages are broadly classified into two namely Fault Detection and Isolation (FDI) and fault accommodation. Basically, the faults are identified by means of state estimation techniques. Then using the decision based approach it is isolated. This is usually performed using soft computing techniques. Fuzzy Decision Making (FDM) system classifies the faults. After identification and classification of the faults, the model is selected by using the information obtained from FDI. Then this model is fed into FTC in the form of MPC scheme by Takagi-Sugeno Fuzzy scheduler. The Fault tolerance is performed by switching the appropriate model for each identified faults. Thus by incorporating the fuzzy scheduled based FTC it becomes more efficient. The system will be thereafter able to detect the faults, isolate it and also able to accommodate the faults in the sensors and actuators of the Continuous Stirred Tank Reactor (CSTR) process while the conventional MPC does not have the ability to perform it.