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Abstract This paper presents a systematic approach to identify a linguistic fuzzy model for a multi-input

and single-output complex system. Such a model is composed of fuzzy rules, and its output is inferred by

the simplified reasoning. The structure and membership function parameters for a fuzzy model are

automatically and simultaneously identified by GA (Genetic Algorithm), After GA search, optimal parameters

for the fuzzy model are finely tuned by a gradient method. A numerical example is provided to evaluate the

feasibility of the proposed approach. Comparison shows that the suggested approach can produce the

linguistic fuzzy model with higher accuracy and a smaller number of rules than the ones achieved

previously in other methods,

1. INTRODUCTION

In recent years, fuzzy modeling. as a compliment to
the conventional modeling techniques, has been studied
to deal with complex, ill-defined
systems. The studies on the fuzzy system modeling

and uncertain

have largely been devoted to two approaches. One is
based on composite relational
theoretically clear, but may

equations [1]. The
approach is suffer

difficulties since the solution of a fuzzy relational
equation is usually not unique, and sometimes it cven
does not exist at all. The other is termed linguistic
model [2-4], in which a fuzzy model is composed of a
set of fuzzy implications, and they are identified by
optimization technicques from sample data. The maodcl
has been popular in industrial applications.

As a new means to determine linguistic fuzzy
models, Genetic Algorithm(GA) has been frequently
Karr [5] adapted successfully GA for fuzzy
controllers to define fuzzy membership functions.

However the determination of rule sets is also

used.

important on designing linguistic fuzzy modcls, so Joo
[6] determined the structure of rules using fuzzy
c-means clustering(FCM) and identified simultaneously
the parameters in the premise and the consequence of
the fuzzy model. Recently, GA dcsign methods for

fuzzy models/controllers have heen developed to
generate the whole parts of fuzzy modcls
simultaneously [7-8].

In this paper we develop a coding format to

determine a fuzzy model by a chromosome in GA and
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present a systematic approach in the identification
procedure of a fuzzy system through the proposed
The proposed GA modeling method
determine both rule sets and membership functions
simultaneously and automatically. After GA searching
in order to determine an optimal fuzzy model for a
complex system, a gradient descent method is used to
tune the fuzzy

coding format.

membership function parameters in
premise part and the real number in consequent part
for better performance.

We provide a numerical example to evaluate the
advantages and the effectiveness of the proposed
approach.

2. AUTOMATIC GA FUZZY MODELLING

2.1 fuzzy model and reasoning
We consider the following format of the fuzzy model
for a multi-input and single output system.
Rule i :
where Rule [ is ith rule (1<i<¢),

is output. A,

if x,is Ay ..x, is A, then yis w, (1)
x(1<j<n) is
is the fuzzy

input variable and y

membership function in premise part defined by (2)
and w, is a real number of consequence part.

if  (a;— b3/2)< %< (a3 +b;/2)

then 1—2lx;— ayl/by ‘
Aij( x,-) == (2)

il x; <(ay—by/2) or 2 > (aj+by/2)

then 0

where «; and b; are the center point and the width

of an isosceles triangle.

As for reasoning, we consider the following



simplified procedure.
1) Given the ith input/output data{x,.xz,....xn,3 ),

calculate the degree of the fulfillment g, in the premise

for the sth rule as :
#i = Ap(xg)x Apxg)=--xAu(xy) (3)

2) Calculate the inferred value %) by taking the

weighted average of w; with respect to u; as :

. “ Hi Wi
Yo = T (4)

Z/‘i
=

where c is the number of fuzzy rules.

2.2 Coding the Genetic Algorithm

In a GA, parameters for a give problem are encoded
into a string, analogous to a chromosome in nature.
Each string, therefore, contains a possible solution to
the problem. To determine how well a chromosome
solves the problem, it is first broken down into the
individual substrings which represent each variable and
these values are then used to evaluate the cost
function, yielding a "fitness”.

Two types of coding used in this research are "real
number coding” and “integer coding”. Parameters and
the structure of a fuzzy model are encoded to
substrings of a chromosome by one of the two. A
chromosome is composed of two substrings(candidate
strings and decision strings) and these substrings are
divided into two parts(premise part and consequent
part). It can be represented as Tig. 1.

chromosome
+
' 3
candidate strings decision strings

‘__1_‘[_%

premise consequent premise consequent
part part part part

Fig. 1. Substrings in a chromosome

Candidate strings are encoded by real numbers, that
is, each code of strings is a real number. Parameters
for a membership function in premise part, «; and b,
are determined by a certain code of the candidate
string for premise part. Fuzzy singleton, w, is
determined by a certain code of candidate string for
consequent part. Fig. 2. illustrates the coding format
for candidate strings
represents the number of input variables, » the number

in a chromosome, where n
of candidates for premise parameters and s the number
of candidates for consequent real numbers.

strings are encoded by integers and
determine the structure of rules and the number of

Decision

rules by choosing one of parameters in candidate

strings.

width (11} | center (11) .- width (1) | center (1)

premise width 21) | center 21) .- width (2r) | center (2r)
strings R R : ; ;

[ width (n1) ] center (n1) J | width (nr) | center () |

consequent

string | position (1) | position (2) I .- I pasition (s) |

Fig. 2. Candidate strings in a chromosome

The premise structure of a rule is determined by
decision strings for premise part, which are composed
of n codes from 0 to r per each rule. This integer
code chooses one parameter from r parameters in the
candidate string. 0 code means that the related nput is
not included in the rule. If all codes are (s in the
decision string for a rule , the rule will be deleted
from the whole rule sets. The determination of the
consequent structure directly means the determination
of the number of The decision string for
consequent part is composed of c(the maximum rule
number) codes from O to s, which chooses one real
number from s candidates in the candidate string for
consequent part and O code deletes the related rule.
Fig. 3. illustrates the coding format for decision string
in a chromosome.

rules.

xmf 11 xmf 12 xmf 1n
premiseﬁ‘; xmt 21 xmt 22 - e
strings ' ' ' '
) . ! !
! —— | o I .. l xmf cn ]
cor;s!src,]gentl;"} { w1 l w2 I .. | we

Fig. 3. Decision strings in a chromosome

By codes in candidate stings and decision strings,
parameters are determined as (5).

a; = center(xmf ij), by = width(xmf ij)

(5)

w; = position{w i)

We determine a fuzzy model by the above coding
formats, so the fuzzy rule sets are not by every
possible combination of input fuzzy sets but by a
chromosome itself. The proposed determination method
for a fuzzy linguistic model can efficiently consider
problems of redundant rules and narrow range for

choosing structures and parameters for fuzzy rule sets.

2.3 Algorithm Description
GA is an iterative adaptive general purpose search
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strategy based on the principle of natural selection.
GAs explore a population of solutions in parallel. Fach
solution in the population is encoded as a chromosome,
and a collection of chromosomes forms a generation. A
generation by
reproduction,

new evolves performing  genetic

operations, such as crossover and

mutation on strings in the current population and then
placing the products into
Reproduction is a process in which individual strings

the new generation.

are copied according to their fitness. After the
members of the newly reproduced strings in the
mating pool are mated at random, offsprings are

constructed by copying the portion of parent strings

designated by random crossover points  with
probability. As each bit
parent to offspring, the bit has the
mutation, another GA  operation
populations.

In this paper, GA is used to determine and optimize

a fuzzy linguistic model to identify complex systems.

a
is copied {rom
probability

changing

crossover
of
for

During the GA search, fitness value is determined by
the inverse of mean square errors between real data
and inferred output. When the nullset in input variables
exists, the fitness function of the related population is
multiplied by a fixed penalty. We check the existence
of nullset for inputs not on the individual input fuzzy
set but on the whole rule By
generation repeatedly, we obtain a satisfactory fuzzy
model. For guaranteeing the convergence of GA search,
we adopt the elitist reproduction. The procedure for the
automatic fuzzy modeling by GA is summarized as

sets. evolving  «

follows :

Step 1 Set the maximum generation
(max_gen) and population size. Fix crossover rate and
mutation rate. Set the maximum rule number(c¢)
candidate strings’ lengths for premise and consecuent
part(r, s).

Step 2 Normalize
identified. Generate
randomly generated codes.

Step 3 Decode the chromosome of each population
and determine the fuzzy model. Evaluate the
square error of fuzzy model by (6) and give fitness
value to each population by (7).

E = %g}(wﬂﬁ)z

if no null set exists :

a4 _ N
E 2
fitness(a) = g;(y,» ¥

if null set exists :

JE_ X penalty =

number

and

input/output data pairs to be

initial populations composed of

mecan

(6)

N

g(y y®

N - penally
-
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Step 4 Evolve all populations by reproduction,
crossover and mutation. Increase generation number by
replacing old generation with new generation. During
the replacement, preserve the population which has the
maximum fitness value by the elitist reproduction.

Step 5 Repeat Step 3~Step 4 until the satisfactory
population appears or the generation number is over
max_gren.

3. FINE TUNING OF PARAMETERS

By adopting GA to fuzzy modelling, we can use its
full advantage of global search. If GA was left
searching enough time, it would be eventually
converge to an optimal solution. However, GA does not

for

perform very well at fine-tuning when the optimal
solution
method to the last stage for automatic fuzzy modelling.

After finding near optimal fuzzy model by GA, we
finely tune the membership function parameters of
premise part and the real numbers of consequent part

is nearby, therefore we adopt a gradient

by a gradient method. This process is performed so as
to minimize the error function £ given by equation (6).
{or optimizing parameters are then

Learning rules

obtained as follows :

ailk+1)=a;(k)— K, - 0E/day (8)
b(k+1)=0b,;(k)— K, - dE/db, 9)
u’;‘;(]€+ 1) = LL‘,‘,‘(/‘(‘) - I{w . 6E/3w,, (10)

4 _NUMERICAL EXAMPLE

We consider the fuzzy model of a dynamic process
using a famous example of the system identification by
Box and Jenkins[9]. The process is a gas furnace with
w(k) and output y(k)
concentration, respectively. 296 /O data pairs

an input ! gas flow rate and
COs
{y(k),2( k), k=1,2,...,296} are available in this example.
w(k—4) and
y(k—1) as input variables to affect the present output
y( k).

Initial parameters for running the GA modeling
procedure are as follows. Maximum generation number

Since the process is dynamic, we take

is 10000, population size is 100, maximum rule number
is 6, s) are 12 and 12
respectively. During the population evolving, crossover
rate is 0.8, mutation rate is 0.5, Nullset penalty on
determination of fitness value is 0.0001. On the fine

candidate string lengths(r,

tuning stage the leaming rates K, K, and &, are
0.0001, 0.0001 and 0.001, respectively.
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Fig. 4. Change of the mean square error

Fig. 4. shows the change of the mean square error
during the evolution and fine tuning stage.

The fuzzy model identified by the GA and gradient
method is shown in Fig. 5.

If xlis . X2is then y is I

0.05450.6481.2415 0.08430.6541.2137 8762

s]
If x2 is then y is |

-0.863 0.06650.996 0.38906

If xlis , X2is then y is

-0.83640.08561.0076-09150.47441.0099 0.999994

If xlis then y is

)
i)

)
)

, X2is

)
)

0.38110.95861.5361-0.08740.45060.9886 0D.75232
1f X2is A then y is
0.38510.9626 1.5401 0.99112

If xlis . X2is then y is

-0.216€60.73991 .6964-0.08730.45070.9887 0.4323

)
)

Fig. 5. Identified fuzzy model for gas furnace.

In TABLE 1, we compare our linguistic fuzzy
model’s performance with other linguistic fuzzy models
and fuzzy relational models, in which our model has
the best performance with the smallest
rules.

number of

TABLE 1. COMPARISON OF OUR MODEL WITH OTHER MODELS

N f | Mes: @
Model Name Inputs umber o ecan Square
Rules Error
Tong's V-1
19 0.469
21 Uk-4
P ' -
edrycz's it 8l 0.320
[1] Uk-4
Xu's Yi-1
25 0.328
{31 Uk-4
Sugeno’s it
(4] Uk-3 6 0.190
Uk-4
Ours Vit 6 0.156
Uk-1
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5. CONCLUSION

The objective of this paper was to develop a new
GA scheme as a tool for the automatic fuzzy modeling.
To do this, we proposed a coding format of
chromosomes in GA and a complete algorithm by the
coding format. We also adopted a gradient descent
method to obtain the better result. A great advantage
of the presented approach is that the only thing we
have to do to design a fuzzy model for a complex
system 1s determining the maximum number of rule
sets and any previous knowledge about the system is
not needed. The simulation result showed that GA
and fine tuning method were successfully used to form
a fuzzy model automatically. Future work will focus on
developing fitness functions which are aimed at
multi-object performance.
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