• Title/Summary/Keyword: Fuzzy logic controller design

Search Result 450, Processing Time 0.021 seconds

Anti-sway and 3D position Control of the Nonlinear Crane System using Fuzzy Algorithm (퍼지 알고리즘을 이용한 비선형 크레인 시스템의 진동방지 및 3차원 위치제어)

  • Lee, Tae-Young;Lee, Sang-Ryong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.8
    • /
    • pp.193-202
    • /
    • 1999
  • Crane operation for transporting heavy loads causes swinging motion at the loads due to crane's acceleration and deceleration. This sway causes the suspension ropes to leave their grooves and leads to possibility of serious damages. So, this swing of the objects is a serious problem and the goal of crane system is transporting to a goal position as soon as possible without the oscillation of the rope. Generally crane is operated by expert's knowledge. Therefore, a satisfactory control method to supress object sway during transport is indispensible. The dynamic behavior of the crane shows nonlinear characteristics. when the length of the rope is changed the crane is time varying system and the design of anti-sway controller is very difficult. In this paper, the nonlinear dynamic model for the industrial overhead crane whose girder, trolley and hoister move simultaneously is derived. and the Fuzzy logic controller based on the expert experiments during acceleration, constant velocity, deceleration and stop position period is proposed to supress the swing motion and control the position of the crane. The performance of the fuzzy controller for the nonlinear crane model is simulated on the personal computer.

  • PDF

Design of an integrated Chassis Controller for the Improvement of Vehicle Dynamic Characteristics (차량의 동특성 향상을 위한 통합 샤시 제어기의 설계)

  • Lee, Sin-Won;An, Tae-Hwan;An, Hyeon-Sik;Lee, Un-Seong;Kim, Do-Hyeon;Kim, Sang-Seop
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.9
    • /
    • pp.43-52
    • /
    • 1998
  • In this paper, a novel type of an integrated controller is designed for vehicles equipped with active classis systems to improve vehicle stability, handling, and ride comfort. The hybrid fuzzy logic controller consists of a fuzzy logic controller, a skyhook controller, an attitude controller, and a roll moment distribution controller, and these controllers are used with a proper combination which is determined by the integrated control logic based on driving conditions of a vehicle. It is shown by simulations using MATRIXx/SYSTEMBBUILD software that ride comfort, handling, and active safety are improved for a 16 degree-of-freedom vehicle dynamic model.

  • PDF

Design and Analysis of Fuzzy PID Control for Nonlinear System (비선형 시스템을 위한 퍼지 PID 제어기의 설계 및 해석)

  • Kim, Sung-Ho;Lee, Cheul-Heui
    • Proceedings of the KIEE Conference
    • /
    • 2000.11d
    • /
    • pp.650-652
    • /
    • 2000
  • Although Fuzzy Logic Controller(FLC) adopted three terms as input gives better performance. FLC is in general composed of two-term control because of the difficulty in the construction of fuzzy rule base. In this paper, a three-term FLC which is similar to PID control but acts as a nonlinear controller is proposed. To reduce the complexity of the rule base design and increase efficiency, a simplified fuzzy PID control is induced from a hybrid velocity/position type PID algorithm by sharing a common rule base for both fuzzy Pi and fuzzy PD parts. It is simple in structure, easy in implementation, and fast in calculation. The phase plane technique is applied to obtain the rule base for fuzzy two-term control and them. The resultant rule base is Macvicar-Whelan type. The frequency response information is used in tuning of membership functions. Also a tuning strategy for the scaling factors is Proposed based on the relationship between PID gain and them. Simulation results show better performance and the effectiveness of the proposed method.

  • PDF

Design of The Stable Fuzzy Controller Using State Feedback Matrix (상태궤환행렬을 이용한 안정한 Fuzzy 제어기의 설계)

  • Choi, Seung-Gyu;Hong, Dae-Seung;Ko, Jae-Ho;Ryu, Chang-Wan;Yim, Wha-Yeong
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.534-536
    • /
    • 1999
  • Fuzzy Systems which are based on membership functions and rules, can control nonlinear, uncertain, complex systems well. However, Fuzzy logic controller(FLC) has problems; It is difficult to design the stable FLC and FLC depends mainly on individual experience. Although FLC can be designed using the error back-propagation algorithm, it takes long time to converge into global, optimal parameters. Well-developed linear system theory should not be replaced by FLC, but instead, it should be suitably used with FLC. A new methodology is introduced for designing THEN-PART membership functions of FLC based on its well-tuned state feedback controller. A example of inverted pendulum is given for demonstration of the robustness of proposed methodology.

  • PDF

Design of GA-Fuzzy Precompensator for Enhancement of Power System Stability (전력시스템의 안정도 향상을 위한 GA-퍼지 전 보상기 설계)

  • Chung, Mun-Kyu;Kim, Sang-Hyo;Chung, Hyeng-Hwan;Lee, Dong-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2001.07a
    • /
    • pp.137-139
    • /
    • 2001
  • In this paper, we design a GA-fuzzy precompensator for enhancement of power system stability. Here, a fuzzy precompensator is designed as a fuzzy logic-based precompensation approach for Power System Stabilizer(PSS). This scheme is easily implemented simply by adding a fuzzy precompensator to an existing PSS. And we optimize the fuzzy precompensator with a genetic algorithm for complements the demerit such as the difficulty of the component selection of fuzzy controller, name1y, scaling factor, membership function and control rules. Simulation results show that the proposed control technique is superior to a conventional PSS in dynamic responses over the wide range of operating conditions and is convinced robustness and reliableness in view of structure.

  • PDF

FLC-MPPT Photovoltaic System for Induction Motor Drive (유도전동기 드라이브를 위한 FLC-MPPT 태양광 발전시스템)

  • Choi, Jung-Sik;Ko, Jae-Sub;Jung, Byung-Jin;Kim, Do-Yeon;Park, Ki-Tae;Choi, Jung-Hoon;Chung, Dong-Hwa
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.301-305
    • /
    • 2007
  • This paper is proposed by fuzzy-based MPPT control of photovoltaic to drive induction motor. Design and prototype implement of a fuzzy logic(FL) controller for maxim]m power extraction from a stand-alon photovoltaic Is proposed in this paper. Error and the change of error between maximum power and real power are used by input of fuzzy controller. Moreover, it output changing of voltage from control constant. The validity of this paper is proved by comparing maximum power point tracking and performance of motor drive through comparison fuzzy and PI of tradition method.

  • PDF

Design and Implementation of PIC/FLC plus SMC for Positive Output Elementary Super Lift Luo Converter working in Discontinuous Conduction Mode

  • Muthukaruppasamy, S.;Abudhahir, A.;Saravanan, A. Gnana;Gnanavadivel, J.;Duraipandy, P.
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.1886-1900
    • /
    • 2018
  • This paper proposes a confronting feedback control structure and controllers for positive output elementary super lift Luo converters (POESLLCs) working in discontinuous conduction mode (DCM). The POESLLC offers the merits like high voltage transfer gain, good efficiency, and minimized coil current and capacitor voltage ripples. The POESLLC working in DCM holds the value of not having right half pole zero (RHPZ) in their control to output transfer function unlike continuous conduction mode (CCM). Also the DCM bestows superlative dynamic response, eliminates the reverse recovery troubles of diode and retains the stability. The proposed control structure involves two controllers respectively to control the voltage (outer) loop and the current (inner) loop to confront the time-varying ON/OFF characteristics of variable structured systems (VSSs) like POESLLC. This study involves two different combination of feedback controllers viz. the proportional integral controller (PIC) plus sliding mode controller (SMC) and the fuzzy logic controller (FLC) plus SMC. The state space averaging modeling of POESLLC in DCM is reviewed first, then design of PIC, FLC and SMC are detailed. The performance of developed controller combinations is studied at different working states of the POESLLC system by MATLAB-Simulink implementation. Further the experimental corroboration is done through implementation of the developed controllers in PIC 16F877A processor. The prototype uses IRF250 MOSFET, IR2110 driver and UF5408 diodes. The results reassured the proficiency of designed FLC plus SMC combination over its counterpart PIC plus SMC.

A Design of Auto-Tuning PID Controller using Fuzzy Reasoning (퍼지추론을 이용한 자동동조 PID 제어기의 설계)

  • Park, S.J.;Hong, H.P.;Park, J.K.;Lim, Y.C.;Cho, K.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1991.11a
    • /
    • pp.345-348
    • /
    • 1991
  • This paper describes a new auto tuning method for the intelligent PID control system. This new method is hosed on the settling time of the process and has been introduced into auto-tuning PID controller using fuzzy logic. The performance of the controller is measured by computer simulation. Simulation shows good results that controller searches well the optimal values of PID parameters in any conditions and the response characteristic of the control system is improved.

  • PDF

Anti-swing and Position Control of Crane Using Intelligent Technique (지능제어를 이용한 크레인의 진동 및 위치 제어에 관한 연구)

  • Lee, Eun-Gyung;Lee, Suk
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.524-527
    • /
    • 1995
  • In most cases, a crane is controlled by an open-loop technique. That is, the controller tries to follow a given velocity profile that is designed to minimize the swing of rope and the transfer time. But such a system is not capable of handling various disturbances such as changing rope length and wind effect. In order to overcome this kind of difficulty, this research focuses on the design of a feedback controller using intelligent techniques such as fuzzy logic and neural network. These intelligent techniques has been emplyoyed in order to represent human knowledge and to imitate human learning. The deveped controllers have been evaluated via computer simulation

  • PDF

Design of fuzzy speed/phase controller for drum motor in home VCR (VCR용 드럼 모터의 퍼지 속도/위상 제어기 설계)

  • 박귀태;이기상;박태홍;배상욱;이상락
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.457-462
    • /
    • 1991
  • Recently, digital techniques have been applied to servo systems of the home VCR, which result in high accuracy, high stability and a small number of parts required. The servo systems are now becoming more compex because the latest home VCRs are stringly required to have many functions. Given these circumstances, software servo concepts were introduced to the VCR servo system with microprocessor. But there are some difficulties in the conventional digital PID controller, eg. caculating the exact gains or dynamics. In this paper, we introduce FLC(Fuzzy Logic Controller) to the speed/phase control for VCR drum motor. To show the usefulness of the proposed controller, some studies are discussed by simulation and experiment.

  • PDF