• Title/Summary/Keyword: Fuzzy System Model

Search Result 1,672, Processing Time 0.027 seconds

Level control of single water tank systems using Fuzzy-PID technique

  • Lee, Yun-Hyung;Jin, Gang-Gyoo;So, Myung-Ok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.5
    • /
    • pp.550-556
    • /
    • 2014
  • In this study, for the control of a single water tank system, a fuzzy-PID controller design technique based on a fuzzy model is investigated. For this purpose, a water tank system is linearized as a number of submodels depending on the operating point, and a fuzzy model is obtained by fuzzy combining. Each submodel is approximated as a first order time delay model, and a PID controller is designed using several existing tuning techniques. Then, through the fuzzy combination of this controller using the same method as that of the fuzzy model, a fuzzy-PID controller is designed. For the proposed technique, a simulation is performed using the fuzzy model of a water tank system, and the validity is examined by comparing its performance with that of a PID controller.

A Fuzzy Model of Systems using a Neuro-fuzzy Network

  • 정광손;박종국
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.7 no.5
    • /
    • pp.21-27
    • /
    • 1997
  • Neuro-fuzzy network that combined advantages of the neural network in learning and fuzzy system in inferencing can be used to establish a system model in the design of a controller. In this paper, we presented the neuro-fuzzy system that can be able to generated a linguistic fuzzy model which results in a similar input/output response to the original system. The network was used to model a system. We tested the performance ot the neuro-fuzzy network through computer simulations.

  • PDF

The design T-S fuzzy model-based target tracking systems (T-S 퍼지모델 기반 표적추적 시스템)

  • Hoh Sun-Young;Joo Young-Hoon;Park Jin-Bae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.11a
    • /
    • pp.419-422
    • /
    • 2005
  • In this note, the Takagi-Sugeno (T-S) fuzzy-model-based state estimator using standard Kalman filter theory is investigated. In that case, the dynamic system model is represented the T-S fuzzy model with the fuzzy state estimation. The steady state solutions can be found for proposed modeling method and dynamic system for maneuvering targets can be approximated as locally linear system. And then, modeled filter is corrected by the fuzzy gain which is a fuzzy system using the relation between the filter residual and its variation. This paper studies the T-S fuzzy model-based state estimator which the dynamic system can be approximated as linear system.

  • PDF

Optimization of Fuzzy Systems by Means of GA and Weighting Factor (유전자 알고리즘과 하중값을 이용한 퍼지 시스템의 최적화)

  • Park, Byoung-Jun;Oh, Sung-Kwun;Ahn, Tae-Chon;Kim, Hyun-Ki
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.6
    • /
    • pp.789-799
    • /
    • 1999
  • In this paper, the optimization of fuzzy inference systems is proposed for fuzzy model of nonlinear systems. A fuzzy model needs to be identified and optimized by means of the definite and systematic methods, because a fuzzy model is primarily acquired by expert's experience. The proposed rule-based fuzzy model implements system structure and parameter identification using the HCM(Hard C-mean) clustering method, genetic algorithms and fuzzy inference method. Two types of inference methods of a fuzzy model are the simplified inference and linear inference. in this paper, nonlinear systems are expressed using the identification of structure such as input variables and the division of fuzzy input subspaces, and the identification of parameters of a fuzzy model. To identify premise parameters of fuzzy model, the genetic algorithms is used and the standard least square method with the gaussian elimination method is utilized for the identification of optimum consequence parameters of fuzzy model. Also, the performance index with weighting factor is proposed to achieve a balance between the performance results of fuzzy model produced for the training and testing data set, and it leads to enhance approximation and predictive performance of fuzzy system. Time series data for gas furnace and sewage treatment process are used to evaluate the performance of the proposed model.

  • PDF

Fuzzy Modeling of a PMSM Chaotic System

  • Zhong Li;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.11a
    • /
    • pp.153-156
    • /
    • 2000
  • In this paper, a mathematical model of a permanent-magnet synchronous motor (PMSM) is derived, and the steady-state characteristics of this system, when subject to constant input voltages and constant external torque, are formulated. It is shown that the PMSM model can exhibit a variety of chaotic phenomena, under some choices of system parameters and external inputs. Based on TS fuzzy modeling methodology, the TS fuzzy model of the PMSM chaotic system is presented, so the interaction between fuzzy system and chaos can be explored, and then fuzzy-model-based control methodologies can be used to control chaos in chaotic systems. Computer simulations show that the strange attractors in the derived TS fuzzy system and original chaotic system are topologically equivalent.

  • PDF

Design of TSK Fuzzy Nonlinear Control System for Ship Steering (선박조타의 TSK 퍼지 비선형제어시스템 설계)

  • Chae, Yang-Bum;Lee, Won-Chan;Kang, Geun-Taek
    • Journal of Navigation and Port Research
    • /
    • v.26 no.2
    • /
    • pp.193-197
    • /
    • 2002
  • This paper suggests a method to design TSK(Takagi-Sugeno-Kang) fuzzy nonlinear control system for automatic steering system which contains the nonlinear component of ship's maneuvering equation. A TSk fuzzy model can be identified using input-output data and represent a nonlinear system very well. A TSK fuzzy controller can be designed systematically from a TSK fuzzy model because the consequent part of TSK fuzzy rule is a linear input-output equation having a constant term. Therefore, this paper suggests the method identifying the TSK fuzzy model and designing the TSK fuzzy controller based on the TSK fuzzy model for ship steering.

Modeling of Dynamic Hysteresis Based on Takagi-Sugeno Fuzzy Duhem Model

  • Lee, Sang-Yun;Park, Mignon;Baek, Jaeho
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.13 no.4
    • /
    • pp.277-283
    • /
    • 2013
  • In this study, we propose a novel method for modeling dynamic hysteresis. Hysteresis is a widespread phenomenon that is observed in many physical systems. Many different models have been developed for representing a hysteretic system. Among them, the Duhem model is a classical nonlinear dynamic hysteresis model satisfying the properties of hysteresis. The purpose of this work is to develop a novel method that expresses the local dynamics of the Duhem model by a linear system model. Our approach utilizes a certain type of fuzzy system that is based on Takagi-Sugeno (T-S) fuzzy models. The proposed T-S fuzzy Duhem model is achieved by fuzzy blending of the linear system model. A simulated example applied to shape memory alloy actuators, which have typical hysteretic properties, illustrates the applicability of our proposed scheme.

Adaptive Fuzzy Control of Helicopter (헬리콥터의 적응 퍼지제어)

  • 김종화;장용줄;이원창;강근택
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.05a
    • /
    • pp.144-147
    • /
    • 2001
  • This paper presents adaptive fuzzy controller which is uncertainty or unknown variation in different parameters with nonlinear system of helicopter. The proposed adaptive fuzzy controller applied TSK(Takagi-Sugeno-Kang) fuzzy system which is not only low number of fuzzy rule, and a linear input-output equation with a constant term, but also can represent a large class of nonlinear system with good accuracy. The adaptive law was designed by using Lyapunov stability theory. The adaptive fuzzy controller is a model reference adaptive controller which can adjust the parameter $\theta$ so that the plant output tracks the reference model output. First of all, system of helicopter was considered as stopping state, and design of controller was simulated from dynamics equation with stopping state. Results show that it is controlled more successfully with a model reference adaptive controller than with a non-adaptive fuzzy controller when there is a modelling error between system and model or a continuous added noise in such unstable system.

  • PDF

Application of fuzzy Petri nets for discrete event system control and monitoring (이산사건 시스템 제어 및 모니터링을 위한 퍼지 패트리네트 응용)

  • 노명균;홍상은
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.403-406
    • /
    • 1997
  • This paper presents a Petri net approach for the control and monitoring of discrete event system. The proposed model is fuzzy Petri nets based on the fuzzy logic with Petri nets and the hierarchy concept. Fuzzy Petri nets have been used to model the imprecise situations which can arise within automated manufacturing system, and also the hierarchy concept allow to handle the refinement of places and transition in Petri nets model. These will form the foundation of a simulator-tool with manipulation interface for application of fuzzy Petri nets.

  • PDF

T-S fuzzy PID control based on RCGAs for the automatic steering system of a ship (선박자동조타를 위한 RCGA기반 T-S 퍼지 PID 제어)

  • Yu-Soo LEE;Soon-Kyu HWANG;Jong-Kap AHN
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.59 no.1
    • /
    • pp.44-54
    • /
    • 2023
  • In this study, the second-order Nomoto's nonlinear expansion model was implemented as a Tagaki-Sugeno fuzzy model based on the heading angular velocity to design the automatic steering system of a ship considering nonlinear elements. A Tagaki-Sugeno fuzzy PID controller was designed using the applied fuzzy membership functions from the Tagaki-Sugeno fuzzy model. The linear models and fuzzy membership functions of each operating point of a given nonlinear expansion model were simultaneously tuned using a genetic algorithm. It was confirmed that the implemented Tagaki-Sugeno fuzzy model could accurately describe the given nonlinear expansion model through the Zig-Zag experiment. The optimal parameters of the sub-PID controller for each operating point of the Tagaki-Sugeno fuzzy model were searched using a genetic algorithm. The evaluation function for searching the optimal parameters considered the route extension due to course deviation and the resistance component of the ship by steering. By adding a penalty function to the evaluation function, the performance of the automatic steering system of the ship could be evaluated to track the set course without overshooting when changing the course. It was confirmed that the sub-PID controller for each operating point followed the set course to minimize the evaluation function without overshoot when changing the course. The outputs of the tuned sub-PID controllers were combined in a weighted average method using the membership functions of the Tagaki-Sugeno fuzzy model. The proposed Tagaki-Sugeno fuzzy PID controller was applied to the second-order Nomoto's nonlinear expansion model. As a result of examining the transient response characteristics for the set course change, it was confirmed that the set course tracking was satisfactorily performed.