22 9 =5 A Aushs] =52 1997, Vol. 7, No. 5. (1997) 21 ~27

A Fuzzy Model of Systems using a Neuro-fuzzy Network

Kwang Son Jeong* and Chong Kug Park**

*Dept. of Electronic Eng., Sang Ji Junior College
**Dept. of Electronic Eng., Kyung Hee University

ABSTRACT

Neuro-fuzzy network that combined advantages of the neural network in learning and fuzzy system
in inferencing can be used to establish a system model in the design of a controller. In this paper, we
presented the neuro-fuzzy system that can be able to generate a linguistic fuzzy model which results in
a similar input/output response to the original system. The network was used to model a system. We
tested the performance of the neuro-fuzzy network through computer simulations.

1. Introduction

Neural networks and fuzzy logic systems are two
of the most important in the area of artificial in-
telligence. These techniques have been effectively ap-
plied to everything from voice and image recognition
to toasters and automobile transmissions. Neural net-
works are best known for their learning capabilities.
Fuzzy logic is a method of using human skills and
thinking processes in a machine. In many ap-
plications, the training of a neural network requires
millions of iterative calculations. Sometimes network
can not adequately learn the desired function. Fuzzy
logic, on the other hand, acquire their knowledge
from an expert who encodes his knowledge in a ser-
ies of IF/THEN rules. But, the problem arises when
systems have many inputs and outputs. Obtaining a
rule base for large systems is difficult, if not im-
possible. Prompted by the weaknesses inherent in the
two technologies and their complementary strengths,
researchers have looked at ways of combining neural
network and fuzzy logic. Because a consensus on the
best way to utilize their individual strengths and com-
pensate for their individual shortcomings has not yet
been established, many researchers have studied the
neuro-fuzzy systems in many directions. Nauck et.al
[1] researched the fusing of neural networks and fuz-
zy systems in an attempt to overcome the disad-
vantage expressed by other researchers using only
one of the technologies. Jang[2] designed a self-learn-
ing fuzzy controller based on temporal back pro-

pagation. The current state of the system is compared
to the desired state and the error is back propagated
through the system to adjust individual fuzzy paramet-
ers. Blanco and Delgado[3] presented their work in
the area of neural-fuzzy techniques. They suggested
that a neural networks's strength lies in its ability to
approximate a function from sample data. The paral-
lel in fuzzy system applications would be the need to
infer an output from a predefined rule base. Pedrycz
{4] successfully trained a fuzzy-neuron neural net-
work to control a system with two state variables and
two control variables. His approach attaches linguis-
tic terms in the place of numberic weights between
the individual processing elements. Lee er.al[5] pro-
posed a neuro-fuzzy identifier which had a cascaded
structure of fuzzification, neural network and de-
fuzzification. The neural network was used to leamn
the rules that associate the fuzzified inputs and de-
fuzzified output. Errors due to the fuzzification and
defuzzification processes was compensated by the
neural network. They used the neuro-fuzzy identifier
to model nonlinear dynamic systems. Horikawa er.al
[6] implemented a fuzzy neural network that was
able to automatically identify fuzzy rules and tune
the membership functions. The system is composed
of a multilayer network. Lin and Lee[7] as well as
Yang and Stachowicz{8] implemented a self-learning
fuzzy logic system embedded in a five layer network.

In this paper, we present the neuro-fuzzy system
that can be able to generate a linguistic fuzzy model
which results in a similar input/output response to the

o)) 9 A5 Al 2EEs] =] 1997 Vol 7, No. S,

original system. The network should be able to in-
corporate existing expert knowledge about the system
as well to learn any additional features in the system
behavior. We tested the performance of the neuro-fuz-
zy network with the different input and output memb-

ership functions through computer simulations.
2. Neural network and fuzzy system

2. 1 Neural network

The neural network that made use of this research
is a multi-layers perceptron network. Trainig of this
network is done using the backward error pro-
pagation algorithm. The general structure of this neur-
al network is consisted of three layers-input, hidden
and output layer. Then, the number of hidden nodes
are selected appropriately from the results of the
learning. Also the weights between layers are det-
ermined by the delta rule and Least Mean Square
training rule. For LMS training the weights are mod-
ified according to the equation (1).

X
Wi =W, +B“~ﬁ (y(lewrnl ~ Yacuat)
X

M

where, w is the weight vector for a processing ele-
ment, x is the input vector, f is a programmer de-
fined constant between 0 and 1, and y is the desired
and actual outputs. The value of f determines how
fast the weighting matrices converge to the point of
the minimum least square error. The output of j-th

neuron of the hidden layer is as follows.

IL=f(Yw,*x;) @)

where, i is the input index, f{ -) is the activation
function. If the activation function select the sig-
moidal function, then the output of j-th neuron from
the equation (2) represents as following.

ja—1 3)

{+e =Y
where, A; is f(Ew,-, *x).
The delta rule made use of the adjusting weights

of a back propagation neural network for minimizing

the error. The error of the j-th neuron in the hidden

[
%]

layer is calculated as follows.

e;=f(I)* Y (W, *Eu))

where, f'(l) is the derivative of R, f'(I) =~ A1) (1-RD)

and the derivative term contributes to stability and
helps to prevent excessive blame being attached to the
middle layer nodes, E, is the error in the n-th nodes of
the output layer. One of the ways to solve the local
minimum problem is to include a momentum in the
delta rule. Then the weights connected input, hidden,
and output layer are modified according to the e-
quation (5).

Ex

Wp =W, +ﬁ 5 +(X(Wn - Wo)pmv (5)

X

where, is the momentum constant.

2. 2 Fuzzy system

Fuzzy logic provides a platform for easily en-
coding human knowledge into the control of a sys-
tem and fuzzy logic is a method of characterizing
knowledge in terms of fuzzy sets and a rule base. A
fuzzy system has one or more inputs that are fuz-
zified, a rule base that is evaluated according to the
inputs and one or more outputs that are defuzzified
into crisp values.

In this paper, fuzzy logic made use of the fuz-
zification for the input value and the defuzzification
for the output value. A triangle selected to the type
of membership function for the input and output vari-
ables. The defuzzification to obtain a crisp output
variable made use of the Simplified Center Of Grav-
ity method[9] such as the following equation (6).

6

3. Neuro-Fuzzy System

It is very hard to model all the behaviors of a sys-
tem unless it is a simple linear system. The main ob-
jective in most of neuro-fuzzy research is to model

an cxisting system. The neuro-fuzzy network that

A Fuzzy Model of Systems using a Neuro-fuzzy Network

Inputs Layer 1

R7
/
Layer 3

Layer 4

Layer 5 Outputs

Fig. 1. Neuro-fuzzy network

selected to model the system is similar to the one by
Yang and Stachowicz[8]. As shown in Fig. 1, the
structure of the network are composed of five layers.
Each layer is composed of several nodes. Two func-
tions are used for every nodes. The first function is
the integration function f' which combines im
formation from the previous layer 1-1. The second lay-
er is the activation function @' which generates the
output from node j in layer 1. In the description of
these functions, the following notations will be used :

u; denotes the input to node j in layer 1 from the
only node connected to it in the previous layer. u,,' de-
notes the input to node j in layer | from node i con
nected to it in the previous layer. ¢'(, j) denotes
the existence of connection between node 7 in layer I-
1 and node j in layer 1. Using the ¢ matrices, the to-
pology of the network is defined.

Layer 1: The first layer is the input layer which
transmit the inputs to their corresponding memb-

ership functions in the next layer.
(7

l—y . fl=yl.gl=f) i=
ul=x-fl=up-al=f, wherei=j

where, x; is the i-th input to the network.

Layer 2: This is the input membership functions

3]
w

layer. Gaussian functions are used to implement the
membership functions because they are continuous,
differentiable and their
parameterized as a part of the functions. Gaussian

means and spreads are
functions can also represent the common memb-
ership function shapes. The second layer is not fuily
connected with the first layer. The connections exist
only between the input nodes in the first layer and
their corresponding membership nodes in the second

layer.

2 2y
2_ (“f_“.,‘) .az

et e =1 @)
g

where, ;" and 0, arc the mean and variance of the
j-th Gaussian membership function for the i-th input.

Layer 3: This layer represents the rules. Each
node in layer 3 performs a fuzzy AND operation us-
ing the algebraic product. The rule association is
done between two membership functions of different
inputs. The output of each node in layer 3 represents
the strength of firing the rule defined by that node.
The synapses connecting layer 2 with layer 3 are eith-
er 1 or 0 to indicate the existence or the nonexistence
of the corresponding rule.

gFEsA] @ A% A|~EEhs] =83 1997 Vol. 7, No.

5.

uj=a? fi=[lul-aj=f}, 3G, D=1 ©
i

Layer 4: This layer performs the fuzzy OR opera-
tion between the rules that result in the same conse-
quences. Initially this layer fully connected to layer 3
which means that any rule can result into any output
membership function. As the network is trained, the
synapses between layer 3 and layer 4 are enforced or
decreased so that the rules are connected to the right
output membership functions. In this scheme one rule
can result into more than one output membership
function which is the general form of fuzzy in-
ferencing.

ui=ai fi=3ufo(wi),
i

ap=min (1, f#), (i, j)=1 (10)

where, w;" is the rule weight factor which indicates

the importance of the rule i. ¢(w;*) maps w;* from the

range [-oo, oo] to the range[0,1].
1

4
(Aztw[j)

(W)= (an

where, o is the steepness of the threshold function ¢.

Layer 5: This layer uses Gaussian output memb-
ership functions and performs the defuzzification
operation.

S 4. f5— S S uS.a5=
uj=at-f; —fof,-#i;u.-j a;
-

5
——];—;—;—,c“-‘(i,j)zl

Z ij Uij
1

5 5 :
where, u;” and o, are the mean and the variance

(12)

of the i-th Gaussian membership function for the j-th
output. The j-th output of the network is as following

equation.

; (13)

yI:al

Learning uses a error back propagation algorithm
to adjust the parameters of the membership functions
and the rule weights. The network are trained with
the input and output data. The learning rule uses the
steepest descend algorithm[10] such that it minimizes
the error E of the following equation.

L1 s
E=2(,=,F (14)

24

where, y; is the desired output and y ; is the net
work output. For the steepest descent algorithm,

oE
ow e =98 a5)
w(e+D=w () +n(-25) (16)

where, w is the adjustable parameter in a node and
7 is the learning rate.

Using the delta rule and the equations for each layer
the adaptation rule for each parameter can be com-
puted. In the description of the adaptation rule, &' de-
notes the delta term for node i in layer 1 back pro-
pagated from the nodes connected to it in the next layer.

Layer 5:

A

5f=)’j“)’j (17)
Auﬂ:nsaj_‘_&i,
Z"Iff“ksf
k
(i, j)=1, ¢k, j)=1 (18)
N o=
/JJ u f; (Z O'lfj ”ksj)_“if(zw?j O-I?j u)
n° & : £ (19)
! (zo'lfjuksj)z
k
Layer 4:
:uisj 0'.7 (Z O'lfj ug)~ 0'5 (Z/Jksj O'Ifj us)
&= (8 ‘ .)(20)
Ej‘ ! (chfjuksj)z
x
A wi?zndafui?w¢(wi?)(1"¢(wi?)),
(i, j)=1 21
Layer 3:
&= (8w, M, j)=1 22)
i
Layer 2:
12225,3(1—[”/?,'), cB(i,j)=1,
7 3
Bk, j)=1 @3)
2(u3— ;)
Aul=m8&a? i~ Hij
M =11 07 d; (O.izj)z
e (i, jy=1 (24)

A Fuzzy Model of Systems using a Neuro-fuzzy Network

2(uz-4i3 y

A q2=n252a2
j (] 2)3
(o

’

(i, j)=1 (25)
Different learning rates were used to define the re-
lative rates of training among the input membership
functions, the rules and the output membership func-
tions. Momentum was also used to stabilize the con-
vergence against oscillation. The parameters updating
rule adding to the momentum was as the following e-
quation[10].
oF
dw

Aw(ky=n(- ytas wk-1) (26)

where, o is momentum. After the network was
trained, the rules with weights below a certain thres-
hold were eliminated and training continued to tune
the membership functions with the new set of rules.
This procedure was repeated until the number of the
rules did not changed. The network was used to
different

known fuzzy test model and was able to reduce the

model systems including a predefined

rules and membership a great deal.
4. Computer simulation and results.

We performed computer simulation to test the per-
formance of neuro-fuzzy network with the different
input and output membership funtions. A fuzzy
model was constructed to test the performance of the
network to converge to the original knowledge base
using the input and output data. The model had two
inputs and one output. Every input and output had
two membership functions. The rules were defined
such that the system had the step response of the
second order system with damping ratio {=0.2. In the
first modeling test, the input and output of the net-
work had two membership functions as the known
system. Fig. 2 and 3 show the initial input and out-
put membership functions, Fig. 4 and 5 show the fi-
identified by the su-
pervised learning after training. In Figures, the thin

nal membership functions

lines are the system membership functions and the
thick lines are the network membership functions.
The network was able
knowledge base very similar to the oringinal system's

to converge to a fuzzy

knowledge base. Also, the network reduced the numb-

08 ﬁ
06 —— system
04 F == network
02+
-100 50 0 50 on €
{a) Membership {unctions of mpur 1

1
08
06

—sysiem

02

n

~70 -20 30 Ne
(h) Membership functions of input 2
Fig. 2. Initial input membership functions

1
[ER)
06 —nelwork
04 ——system
0.2

a .

0 50 100 150 -

Fig. 3. Initial output membership functions

[n:]
086 ——s5ystem
04 ~— networx
a2
0
£0 -10 40 90 [

(a) Membership functions of input |

08
06 —3system |
04 e NEIW Ok ‘
02
0 -
—40 10 60 e
(b) Membership functions of input 2
Fig. 4. Final input membership functions
1
08
06 system
04 e N8 {WOTK
02
0

0 50 100 150 AV

Fig. 5. Final output membership functions

er of the rules from eight possible rules to only the
four rules used in the system's model. These rules are
as following.

IF (in1=MF1) and (in2=MF1) THEN (out=MF2)

IF (in1=MF1) and (in2=MF2) THEN (out=MF2)

@
e
>
)

) A% A AEsks] =53] 1997 Vol. 7, No. S.

06
03
04
0.3
n2 /tra\n
0.1
00

RMS errar

0 0 10 50 0 100

Iteraion number

Fig. 6. Learning error of the network

IF (in1=MF2) and (in2=MF1) THEN (out=MF1)

IF (in1=MF2) and (in2=MF2) THEN (out=MF1)

Fig. 6 shows the learning error of the network. As
shown Fig. 6, the leaming error was to be near zero
after the first 25 epochs and the network converged
to the original system model approximately. The
second modeling test was performed with the same
systems model but the network had three memb-
ership functions for every input. Fig. 7 and 8 show
the initial input and output membership functions,
Fig. 9 and 10 show the final membership functions
after training. Fig. 11 shows the learning error of the
network. As shown Fig. 11, the learning error was to
be near zero after the first 50 epochs and the network

1
08
05 ——s5ystem
04 —network
02
0 (3
60 -10 40 ac

(1) Membership functions of input 1

g€ —system
04 — nctwork

=40 10 60 Ae

ih) Membership functions of input 2

Fig. 7. Initial input membership functions

0.8
06 ——system q
04 — network
0.2
0

0 50 100 50 Au

Fig. 8. Initial output membership functions

0.8
06 —system
04 —network |
02
0
-60 -10 40 30 ¢
{a) Membership functions of input 1
i
08
0.6 —systen |
0.4 — network]
0?2
0
40 10 60 ~e
(h) Membership functions of input 2
Fig. 9. Final input membership functions
1
08
0.6 —-system
0.4 — network
0.2
0
0 50 100 150 Su
Fig. 10. Final output membership functions
05
0.4
.
e
5 03
%) .
= 02 train
= /
0.1
[l.l]u 20 40 60 80 100
Iteration number

Fig. 11. Learning error of the network

converged to the original system model approximately.
Therefore, There was no noticeable difference between
the response of the network and system. Also, the net-
work reduced the number of the rules from eighteen
possible rules to only the four rules used in the
system's model.

5. Conclusion

We presented the neuro-fuzzy system that can be
able to generate a linguistic fuzzy model which
results in a similar input/output response to the ori-
ginal system. The architecture allows knowledge in-
corporation as well as rules and membership functions

A Fuzzy Model of Systems using a Neuro-fuzzy Network

tuning. Also, we showed the performance of the neu-
ro-fuzzy network for the different input and output
membership functions through computer simulations.
From the results, we knew that the response of the net-
work was similar to the response of the system.

References

[1] D. Nauck, F. Klawonn and R. Kruse, "Combining
Neural Networks and Fuzzy Controllers, Fuzzy Logic
in Artificial Intelligence(FLAI93), pp. 35-46, 1993

[2] J. Jang, “Self-Learing Fuzzy Controllers Based on
Temporal Back Propagation, IEEE Trans. on Sys-
tems, Man and Cybernetics, 1992.

[3] A. Blanco and M. Delgado, “A Direct Fuzzy Inf-
erence Procedure By Neural Networks, Fuzzy Sets
and Systems, pp. 133-141, 1993.

{4] W. Pedrycz, “Fuzzy sets and Neurocomputations :
Knowledge representation and pro-cessing in in-
telligent controllers,” fifth International Symposiwm

on Intelligent Control, pp. 626-630, 1990.

[5] M. Lee, S. Lee, and C. H. Park, "A new neuro-fuz-
zy identification model of non-linear dynamic sys-
tems, International Journal of Approximate Rea-
soning, vol. 10, pp. 29-44, 1994.

[6] S. Horikawa, T. Furuhashi and Y. Uchikawa, "On
fuzzy modeling using fuzzy neural networks with
the back-propagation algorithm,” JEEE Trans. on
Neural Networks, vol. 3, pp. 801-806, 1992.

[7] C. Lin and C. S. G. Lee, "Reinforcement structure/
parameter learning for neural network based fuzzy
logic control systems,” I[EEE Trans. on Fuzzy Sys-
tems vol. 2, pp. 46-63, 1994,

[8] C. Yang and M. S. Stachowicz, “An algorithm for
designing a self-learning fuzzy logic system, in
Proc. of the 1994 International Fuzzy Systems and
Intelligent Control Conference, pp. 258-267, 1994.

[9] S. Chae, Y. S. Oh, “Fuzzy theorem and control,’
Cheongmoongak Press, 1995.

[10] D. S. Kim, “Neural network : theoy and application
1" Hi-tech information Press, 1994,

A & & (Kwang-Son Jeong) #1341

1986+ Fofefstar At} (gt

1988 A3 chstw Aapgats) (et
A ah

199413~ 4} 73 3ol a5z
babs}

19032 ~aal: Abx] sk v 4 ot
Rt

F3hy ok R Aol 2RE 2, AgAel

SREL S

8} = 3 (Chong-Kug Park) % 3]

A 638 3% B
A A2 et wabgest

27

