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Abstract

In this study, we propose a novel method for modeling dynamic hysteresis. Hysteresis is a
widespread phenomenon that is observed in many physical systems. Many different models
have been developed for representing a hysteretic system. Among them, the Duhem model
is a classical nonlinear dynamic hysteresis model satisfying the properties of hysteresis. The
purpose of this work is to develop a novel method that expresses the local dynamics of the
Duhem model by a linear system model. Our approach utilizes a certain type of fuzzy system
that is based on Takagi-Sugeno (T-S) fuzzy models. The proposed T-S fuzzy Duhem model is
achieved by fuzzy blending of the linear system model. A simulated example applied to shape
memory alloy actuators, which have typical hysteretic properties, illustrates the applicability
of our proposed scheme.
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1. Introduction

Hysteresis is a phenomenon that has long been observed in a wide variety of physical systems,
including mechanical hysteresis, magnetic hysteresis, and material hysteresis. For instance,
hysteresis displayed by shape memory alloy (SMA) during the process of a phase transition
is an example of hysteresis in a mechanical system [1]. There is no precise agreement in
the literature regarding the definition of hysteresis. In this paper, we follow the definition
proposed by Mayergoyz [2]. According to this definition, a system is said to be hysteretic if
its input-output relationship is a multi-branch nonlinearity. Figure 1 shows a typical hysteresis
nonlinearity.

Modeling of hysteresis nonlinearity is an important goal of research in the field of hysteresis.
For several decades, various models for hysteresis have been developed, such as the Preisach
model [3] and Duhem model [4]. The Duhem model is a classical nonlinear dynamic model,
whereas the Preisach model is not a dynamic model. Additionally, the Duhem model satisfies
the properties of hysteresis, such as memory and rate-independence. Moreover, the Duhem
model is able to tune the minor loop shapes independently from the major loop shapes. This
increases the usefulness of the Duhem model in describing complicated minor loops. Hence,
this model has been widely used to describe hysteretic systems, and many other models of
hysteresis are related to the Duhem model [5]. For example, the Bouc-Wen model [6, 7] as
well as the Coleman-Hodgdon model [8] are special cases of the Duhem model. The Chua-
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Figure 1. Hysteresis nonlinearity.

Stromsmoe model [9] is a generalization of the Duhem model.
The hysteresis phenomenon is a typical nonlinear system.

Hence, it is impossible to apply various linear system theories,
and it is difficult to analyze a hysteresis system, even though
the Duhem model expresses the dynamics of hysteresis well.
To solve this problem, we propose a dynamic hysteresis model
based on a Takagi-Sugeno (T-S) fuzzy model to express the
local dynamics of a Duhem model with a linear system model.
The proposed T-S fuzzy Duhem model is achieved by fuzzy
blending of the linear system model. By using the proposed
model, we can apply various linear system theories to a dynamic
hysteresis model.

The remainder of this paper is organized as follows. In
Section 2, we explain hysteresis and its properties. In Section
3, the dynamics of the Duhem model are introduced. Section
4 presents the proposed T-S fuzzy Duhem model. Simulated
results verifying the applicability of the proposed model are
provided in Section 5. Concluding remarks are presented in the
final section.

2. Hysteresis and Its Properties

2.1 Hysteresis

Hysteresis arises in diverse physical systems, including me-
chanical hysteresis, magnetic hysteresis, and material hystere-
sis. The word “hysteresis” has been derived from the Greek
word “hysterein,” which connotes lag, and hysteretic systems
are generally described as having memory. Although there is
no precise definition of hysteresis, our work follows the def-
inition proposed by Mayergoyz. According to Mayergoyz, a
system is said to be hysteretic if its input-output relationship is
a multi-branch nonlinearity for which transitions from a branch
to another branch occur at input extrema.

2.2 Properties of Hysteresis

Hysteresis has several properties. These properties are re-

Figure 2. Hysteretic memory.

garded as inherent to hysteresis or as necessary conditions for
a system to display hysteresis. Two of the most important
properties of hysteresis are memory and rate-independence.

Mayergoyz has said that hysteresis can be regarded as non-
linearity with memory. Memory implies that the output may
depend not only on the input but also on the previous evo-
lution of the input. According to Mayergoyz, all hysteresis
nonlinearities can be classified into two categories: hysteresis
nonlinearities with local memories and hysteresis nonlinearities
with nonlocal memories. For the hysteresis nonlinearities with
local memories, the future output depends uniquely upon the
future input for any given output. Figure 2(a) shows that the
graph can follow only one path if the input increases and only
one path if the input decreases. However, for the hysteresis non-
linearities with nonlocal memories, the future output depends
not only upon the current output and future input but also on
the past history of input extremum values. Hence, the graph can
trace any number of paths, depending on the previous evolution
of input, as shown in Figure 2(b).

The decisive characteristic differentiating hysteretic non-
linearities from all other systems with memory is the rate-
independence property. Hysteresis is said to be rate-independent
if the rate of change of input has no influence on branching,
while variation in the branches of the hysteresis nonlinearity are
determined only by the past extremum of the input. These prop-
erties often determine whether a hysteresis model is suitable for
representing a system or not [5].

3. Classical Duhem Model

Many different mathematical models have been developed to
express hysteresis nonlinearity, such as the Preisach model,
Duhem model, Bouc-Wen model, and Chua-Stromsmoe model.
Considering the usefulness of the dynamics provided by models
and the capability of satisfying the above-mentioned properties,
we chose a classical Duhem model to design the hysteresis
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model based on T-S fuzzy models.

The Duhem model is a differential-equation-based hysteresis
model. For any differentiable hysteresis input v(t) and any
initial value w0 of the hysteresis output, the hysteresis output
w is defined to be the solution of the following initial value
problem:

ẇ(t) = g+(v(t), w(t))(v̇(t))
+ − g−(v(t), w(t))(v̇(t))−

w(0) = w0

(1)

The slopes of the hysteresis curves can be determined by
slope functions g+ and g−. The subscripts + and − represent
increasing and decreasing curves, respectively. For (v̇(t))±, the
slope can be defined as

(v̇(t))
±
=
|v̇(t)| ± v̇(t)

2
. (2)

By using the Duhem model with the appropriate slope func-
tions for both increasing and decreasing conditions, we can
model the hysteresis. Consequently, how to choose suitable
slope functions is key for successful modeling using the Duhem
model. The literature [1] proposes the use of Gaussian probabil-
ity density functions (PDFs) as slope functions for the Duhem
model, which is given by

g±(v) =
k

σ±
√
2π

exp

(
− (v − µ±)2

2σ2
±

)
(3)

where v is the input, k is the constant parameter, σ2 is the
variance, and µ is the mean of the Gaussian PDF. We assume
that hysteresis curves have zero slopes at both the beginning
and end of each curve. Hence, we can also choose Gaussian
PDFs for the slope functions of the Duhem model. From Eqs.
(1-3), we can observe that the major loop slope function is given
by the differential equation

dw

dv
=


k

σ+

√
2π

exp
(
− (v−µ+)2

2σ2
+

)
, v̇ ≥ 0

k
σ−
√
2π

exp
(
− (v−µ−)2

2σ2
−

)
, v̇ < 0.

(4)

An approach for representing the differential model of a mi-
nor loop was proposed by Likhachev. According to Likhachev,
the major loop slope functions are multiplied by a scaling con-
stant to obtain the minor loop slope functions. Consequently,
the complete hysteresis model including both the major loop

Figure 3. Hysteresis curves based on the Duhem model.

and the minor loop can be expressed as

dw

dv
=

{
k h−(v)−w
h−(v)−h+(v)g+(v), v̇ ≥ 0

k w−h+(v)
h−(v)−h+(v)g−(v), v̇ < 0

(5)

where

h±(v) =
1

2

[
1 + erf

(
v − µ±
σ±
√
2

)]
. (6)

Figure 3 shows an example of hysteresis curves modeled by
the Duhem model with Gaussian PDF slope functions. These
curves consist of a major loop and a minor loop.

4. T-S fuzzy Duhem Model

In Eqs. (5) and (6), the Duhem model is expressed in the form
of differential dynamic equations. Because these dynamics
consist of nonlinear functions, various linear system theories
and analysis techniques cannot be applied to the hysteresis
system. To solve this problem, we propose a T-S fuzzy Duhem
model, which expresses the local dynamics of the Duhem model
by a linear system model. As expressed in [10], the i rules of
the T-S fuzzy models are of the following form:

If z1(t) is Mi1 and · · · and zp(t) is Mip (7)

Then
ẋ(t) = Aix(t) +Biu(t),

y(t) = Cix(t), i = 1, 2, . . . , r.
(8)

Here, Mij is the fuzzy set, and r is the number of model rules:
x(t) ∈ <n is the state vector, u(t) ∈ <m is the input vector,
y(t) ∈ <q is the output vector, and Ai ∈ <n×n, Bi ∈ <n×m,
and Ci ∈ <q×n; z1(t), . . . , zp(t) are known premise variables
that may be functions of the state variables and time.

By modifying the differential equation of the Duhem model,
we can apply a T-S fuzzy model to the Duhem model. Eq. (5)
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can be modified as

ẇ =

{
−k g+(v)v̇

h−(v)−h+(v)w + k h−(v)g+(v)v̇
h−(v)−h+(v) , v̇ ≥ 0

k g−(v)v̇
h−(v)−h+(v)w − k

h+(v)g−(v)v̇
h−(v)−h+(v) , v̇ < 0.

(9)

We define v and v̇ as premise variables z1(t) and z2(t), re-
spectively. Then, the i rules of the proposed T-S fuzzy Duhem
model are derived as

If v(t) is Mi1 and v̇(t) is Mi2 (10)

Then
ẋ(t) = Aix(t) +Bi,

y(t) = Cix(t), i = 1, 2, . . . , r.
(11)

where x(t) = w(t) and Ci = 1.
There are two approaches for constructing a fuzzy model.

The identification approach, which uses input-output data, is
suitable for plants that are too difficult to be expressed as ana-
lytical models. On the other hand, when a nonlinear dynamic
model is obtainable, a fuzzy model can be modeled by a deriva-
tion from the given nonlinear system equations. Indeed, if we
know the nominal values of the parameters µ± and σ±, then
we can use the second approach. In general, however, choosing
the parameter values of the slope functions may be difficult. In
such cases, the identification approach is more appropriate.

By using the proposed T-S fuzzy Duhem model, we can
express the hysteretic system with a sublinear dynamic sys-
tem. In fact, it is proven that T-S fuzzy models are universal
approximators and used for various application in [11–15].

5. Simulations

This section presents a simulation of the T-S fuzzy Duhem
model with models of SMA actuators. SMAs are metallic al-
loys that display the shape memory effect. When SMAs are
cooled or heated to a different temperature, phase transitions
can occurred. During the process of the phase transition, SMAs
exhibit a hysteretic transformation. To demonstrate the effec-
tiveness of the proposed method, we compare the simulation
results for modeling using the Duhem model with those using
the T-S fuzzy Duhem model. Simulations for two cases were
executed to verify the applicability of the T-S fuzzy Duhem
model. The first case is that the hysteresis curve displays only
a major loop. The second case is that the hysteresis curve dis-
plays both a major loop and minor loop. Figures 4 and 5 show
the temperature input signal used in the simulations. The range
of the input is [−300 300]. Table 1 shows the parameter val-
ues used in this modeling simulation. These parameters are

Figure 4. Input signal for major loop.

Figure 5. Input signal for mixed loop.

obtained from the literature [16].

As mentioned above, we can model the hysteresis of an SMA
actuator by using the classical Duhem model. Under the above
parameters and equations, hysteresis curves modeled by the
classical Duhem model are shown in Figures 6 and 7. Because
an identification approach is chosen to construct T-S fuzzy
systems, input-output pairs should be obtained. We can obtain
input-output pairs from the simulation results for the classical
Duhem model and construct a T-S fuzzy system with the data.
Eleven fuzzy sets are defined as fuzzy sets of the first input
v, as shown in Figure 8. To reflect two conditions of Eq. (9),
two fuzzy sets are defined as fuzzy sets of the second input
v̇, as shown in Figure 9. These fuzzy sets reflect whether the
SMA actuator is in a cooling state or heating state. By using
the input-output pairs and the previous membership functions,
we can determine the values of Ai and Bi in Eq. (11) for each
rule. Consequently, we can plot the hysteresis curves modeled
by the T-S fuzzy Duhem model, as in Figures 10 and 11.

The results in Figures 10 and 11 exhibit the hysteresis non-
linearity well. More analytically, we computed modeling errors
between the results for the classical Duhem model and the T-S
fuzzy Duhem model. The modeling errors are shown in Fig-
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Table 1. Simulation parameters

k µ+ µ− σ+ σ−

40 75 70 35 -45

Figure 6. Hysteresis curves for the Duhem model with major loop.

Figure 7. Hysteresis curves for the Duhem model with mixed loop.

Figure 8. Membership functions for v.

ures 12 and 13. The simulation results show that the proposed
model approximates the Duhem model within a bounded range
of [−1.2 1]. Considering the scaling constant k = 40, our
proposed model has a modeling error within 3%. We conclude
that this bounded range is acceptable.

Figure 9. Membership functions for v̇.

Figure 10. Hysteresis curves for the T-S fuzzy Duhem model with
major loop.

Figure 11. Hysteresis curves for the T-S fuzzy Duhem model with
mixed loop.

6. Conclusion

Many hysteresis models have been proposed and studied. How-
ever, the existing hysteresis models include nonlinear functions.
Hence, it is impossible to apply various linear system theo-
ries and difficult to analyze a hysteretic system. To solve this
problem, we propose a system based on a T-S fuzzy model.
To design the T-S fuzzy system, the Duhem model, which is
expressed by dynamic equations, can be used. Unlike the previ-
ous model, the proposed model can express the local dynamics
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Figure 12. Modeling error for major loop case.

Figure 13. Modeling error for mixed loop case.

of hysteresis with a linear system. Additionally, the proposed
model was verified to have applicability to simulations. Con-
sidering the wide range of hysteresis modeling, the proposed
model is useful.
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