• 제목/요약/키워드: Fuzzy Structure Modeling

검색결과 151건 처리시간 0.024초

연구개발 프로젝트 평가에 대한 의식구조분석 (Analysis of Consciousness Structure R&D Project Evaluation)

  • 김성희;김정자
    • 산업경영시스템학회지
    • /
    • 제25권4호
    • /
    • pp.61-68
    • /
    • 2002
  • This paper provides a method of consciousness structure analysis for research and development project evaluation using fuzzy structure modeling(FSM). Fuzzy structure modeling, which is a modeling method for consciousness structure, has a large number of pairwise comparison by human subjective judgement and is difficult to check the consistency index of denoting the precision for human judgement. Thus, in this paper, we analyzed the structure of consciousness by fuzzy structural modeling method, introducing the concept of pairwise comparison matrix in Analytic Hierarchy Process.

The Modeling of Chaotic Nonlinear System Using Wavelet Based Fuzzy Neural Network

  • Oh, Joon-Seop;You, Sung-Jin;Park, Jin-Bae;Choi, Yoon-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.635-639
    • /
    • 2004
  • In this paper, we present a novel approach for the structure of Fuzzy Neural Network(FNN) based on wavelet function and apply this network structure to the modeling of chaotic nonlinear systems. Generally, the wavelet fuzzy model(WFM) has the advantage of the wavelet transform by constituting the fuzzy basis function(FBF) and the conclusion part to equalize the linear combination of FBF with the linear combination of wavelet functions. However, it is very difficult to identify the fuzzy rules and to tune the membership functions of the fuzzy reasoning mechanism. Neural networks, on the other hand, utilize their learning capability for automatic identification and tuning. Therefore, we design a wavelet based FNN structure(WFNN) that merges these advantages of neural network, fuzzy model and wavelet transform. The basic idea of our wavelet based FNN is to realize the process of fuzzy reasoning of wavelet fuzzy system by the structure of a neural network and to make the parameters of fuzzy reasoning be expressed by the connection weights of a neural network. And our network can automatically identify the fuzzy rules by modifying the connection weights of the networks via the gradient descent scheme. To verify the efficiency of our network structure, we evaluate the modeling performance for chaotic nonlinear systems and compare it with those of the FNN and the WFM.

  • PDF

Structure Identification of a Neuro-Fuzzy Model Can Reduce Inconsistency of Its Rulebase

  • Wang, Bo-Hyeun;Cho, Hyun-Joon
    • 한국지능시스템학회논문지
    • /
    • 제17권2호
    • /
    • pp.276-283
    • /
    • 2007
  • It has been shown that the structure identification of a neuro-fuzzy model improves their accuracy performances in a various modeling problems. In this paper, we claim that the structure identification of a neuro-fuzzy model can also reduce the degree of inconsistency of its fuzzy rulebase. Thus, the resulting neuro-fuzzy model serves as more like a structured knowledge representation scheme. For this, we briefly review a structure identification method of a neuro-fuzzy model and propose a systematic method to measure inconsistency of a fuzzy rulebase. The proposed method is applied to problems or fuzzy system reproduction and nonlinear system modeling in order to validate our claim.

비선형 시스템 모델링을 위한 퍼지 모델 구성 알고리즘 (A Constructive Algorithm of Fuzzy Model for Nonlinear System Modeling)

  • 최종수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부 B
    • /
    • pp.648-650
    • /
    • 1998
  • This paper proposes a constructive algorithm for generating the Takagi-Sugeno type fuzzy model through the sequential learning from training data set. The proposed algorithm has a two-stage learning scheme that performs both structure and parameter learning simultaneously. The structure learning constructs fuzzy model using two growth criteria to assign new fuzzy rules for given observation data. The parameter learning adjusts the parameters of existing fuzzy rules using the LMS rule. To evaluate the performance of the proposed fuzzy modeling approach, well-known benchmark is used in simulation and compares it with other modeling approaches.

  • PDF

새로운 계층 구조를 이용한 퍼지 시스템 모델링 (Fuzzy System Modeling Using New Hierarchical Structure)

  • 김도완;주영훈;박진배
    • 한국지능시스템학회논문지
    • /
    • 제12권5호
    • /
    • pp.405-410
    • /
    • 2002
  • 본 논문은 수학적으로 모델링하기 어려운 비선형 시스템을 위한 새로운 계층적 규칙 기반 퍼지 시스템 모델링 기법을 제안한다. 제안된 기법은 퍼지 규칙 기반 구조를 상위 규칙 기반과 하위 규칙 기반으로 나누어 계층화시키는 새로운 모델링 방법이다. 본 논문에서 제안한 계층적 퍼지 규칙을 적용함으로써 퍼지 규칙을 효율적이고 논리적으로 이용할 수 있음은 물론, 퍼지 규칙의 효율적, 논리적 사용은 퍼지 시스템의 정확성을 높일 수 있고 구조를 명료화시킬 수 있음을 보인다. 유전알고리즘은 제안된 퍼지 규칙의 파라미터 최적화 과정에 이용된다. 마지막으로, 복잡한 비선형 시스템에 대한 퍼지 모델링 결과를 통해서 제안된 기법의 타당성 및 효용성을 검증하고 타 기법의 결과와 비교한다.

퍼지추론 방법에 의한 퍼지동정과 하수처리공정시스템 응용 (Fuzzy Identification by means of Fuzzy Inference Method and Its Application to Wate Water Treatment System)

  • 오성권;주영훈;남위석;우광방
    • 전자공학회논문지B
    • /
    • 제31B권6호
    • /
    • pp.43-52
    • /
    • 1994
  • A design method of rule-based fuzzy modeling is presented for the model identification of complex and nonlinear systems. The proposed rule-based fuzzy modeling implements system structure and parameter identification in the efficient form of ``IF....,THEN...', using the theories of optimization theory , linguistic fuzzy implication rules and fuzzy c-means clustering. Three kinds of method for fuzzy modeling presented in this paper include simplified inference (type I), linear inference (type 2), and modified linear inference (type 3). In order to identify premise structure and parameter of fuzzy implication rules, fuzzy c- means clustering and modified complex method are used respectively and the least sequare method is utilized for the identification of optimum consequence parameters. Time series data for gas furance and those for sewage treatment process are used to evaluate the performance of the proposed rule-based fuzzy modeling. Comparison shows that the proposed method can produce the fuzzy model with higher accuracy than previous other studies.

  • PDF

Generalized Fuzzy Modeling

  • Hwang, Hee-Soo;Joo, Young-Hoon;Woo, Kwang-Bang
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1993년도 Fifth International Fuzzy Systems Association World Congress 93
    • /
    • pp.1145-1150
    • /
    • 1993
  • In this paper, two methods of fuzzy modeling are prsented to describe the input-output relationship effectively based on relation characteristics utilizing simplified reasoning and neuro-fuzzy reasoning. The methods of modeling by the simplified reasoning and the neuro-fuzzy reasoning are used when the input-output relation of a system is 'crisp' and 'fuzzy', respectively. The structure and the parameter identification in the modeling method by the simplified reasoning are carried out by means of FCM clustering and the proposed GA hybrid scheme, respectively. The structure and the parameter identification in the modeling method by the neuro-fuzzy reasoning are carried out by means of GA and BP algorithm, respectively. The feasibility of the proposed methods are evaluated through simulation.

  • PDF

유전자 알고리즘을 사용한 퍼지-뉴럴네트워크 구조의 최적모델과 비선형공정시스템으로의 응용 (The Optimal Model of Fuzzy-Neural Network Structure using Genetic Algorithm and Its Application to Nonlinear Process System)

  • 최재호;오성권;안태천;황형수
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1996년도 추계학술대회 학술발표 논문집
    • /
    • pp.302-305
    • /
    • 1996
  • In this paper, an optimal identification method using fuzzy-neural networks is proposed for modeling of nonlinear complex systems. The proposed fuzzy-neural modeling implements system structure and parameter identification using the intelligent schemes together with optimization theory, linguistic fuzzy implication rules, and neural networks(NNs) from input and output data of processes. Inference type for this fuzzy-neural modeling is presented as simplified inference. To obtain optimal model, the learning rates and momentum coefficients of fuzz-neural networks(FNNs) and parameters of membership function are tuned using genetic algorithm(GAs). For the purpose of its application to nonlinear processes, data for route choice of traffic problems and those for activated sludge process of sewage treatment system are used for the purpose of evaluating the performance of the proposed fuzzy-neural network modeling. The show that the proposed method can produce the intelligence model w th higher accuracy than other works achieved previously.

  • PDF

퍼지 GMDH 모델과 하수처리공정에의 응용 (Fuzzy GMDH Model and Its Application to the Sewage Treatment Process)

  • 노석범;오성권;황형수;박희순
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1995년도 추계학술대회 학술발표 논문집
    • /
    • pp.153-158
    • /
    • 1995
  • In this paper, A new design method of fuzzy modeling is presented for the model identification of nonlinear complex systems. The proposed fuzzy GMDH modeling implements system structure and parameter identification using GMDH(Group Method of Data Handling) algorithm and linguistic fuzzy implication rules from input and output data of processes. In order to identify premise structure and parameter of fuzzy implication rules, GMDH algorithm and fuzzy reasoning method are used and the least square method is utilized for the identification of optimum consequence parameters. Time series data for gas furnaceare those for sewage treatment process are used for the purpose of evaluating the performance of the proposed fuzzy GMDH modeling. The results show that the proposed method can produce the fuzzy model with higher accuracy than other works achieved previously.

  • PDF

하이브리드 면진장치의 뉴로-퍼지 모형화 (Neuro-Fuzzy Modeling Approach for Hybrid Base Isolaton System)

  • 김현수;;이동근
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.201-208
    • /
    • 2005
  • Neuro-Fuzzy modeling approach is proposed to predict the dynamic behavior of a single-degree-of-freedom structure that is equipped with hybrid base isolation system. Hybrid base isolation system consists of friction pendulum systems (FPS) and a magnetorheological (MR) damper. Fuzzy model of the M damper is trained by ANFIS using various displacement, velocity, and voltage combinations that are obtained from a series of performance tests. Modelling of the FPS is carried out with a nonlinear analytical equation that is derived in this study and neuro-fuzzy training. Fuzzy logic controller is employed to control the command voltage that is sent to MR damper. The dynamic responses or experimental structure subjected to various earthquake excitations are compared with numerically simulated results using neuro-fuzzy modeling method. Numerical simulation using neuro-fuzzy models of the MR damper and FPS predict response of the hybrid base isolation system very well.

  • PDF