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Abstract

It has been shown that the structure identification of a neuro-fuzzy model improves their accuracy performances in a various modeling

problems. In this paper, we claim that the structure identification of a neuro-fuzzy model can also reduce the degree of inconsistency of its

fuzzy rulebase. Thus, the resulting neuro-fuzzy model serves as more like a structured knowledge representation scheme. For this, we briefly

review a structure identification method of a neuro-fuzzy model and propose a systematic method to measure inconsistency of a fuzzy

rulebase. The proposed method is applied to problems of fuzzy system reproduction and nonlinear systam modeling in order to validate our

claim.
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1. Introduction

Neuro-fuzzy modeling is a problem to identify a fuzzy
model of a system on the basis of input-output data by using
the neuro-fuzzy systems [1]. Identification of neuro-fuzzy
models consists of two sub problems: structure identification
and parameter identification. The structure identification
partitions the associated input space while the parameter
identification optimizes the adjustable parameters of the neuro-
fuzzy models.

For most practical modeling problems, there are two prime
concerns: model’s efficiency and model’s accuracy. A common
neuro-fuzzy modeling practice uses numerical data for
parameter identification, while employing an arbitrary number
of fuzzy rules and random initial parameters. Without an
efficiency requirement, this is a feasible approach at least in
practical viewpoint, However, when we must deal with both

the model's efficiency and the model's accuracy simultaneously,

we inevitably raise the following question: what is the
minimum number of fuzzy rules to achieve a certain level of
accuracy? This challenging problem is dealt by the structure
identification of neuro-fuzzy models. A number of structure
identification methods have been proposed and applied to
various modeling problem with improved performances [2,3,4].

Although we know the minimum number of fuzzy rules a
priori, some neuro-fuzzy models which consist of that
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minimum number of rules do not show an acceptable accuracy,
since the initial parameters significantly affect the performance
of parameter identification [5]. Furthermore, among the models
of the acceptable accuracy which are built through repeated
trials, most of them have some inconsistent rules, i.e., rules that
have the same premise part but different consequent parts. We
can view the identified neuro-fuzzy models of some
inconsistent rules as something more like black-box models
such as neural networks.

In this paper, we address that the structure identification
method can build a more consistent neuro-fuzzy model which
satisfies the predetermined accuracy requirement, while using
the least possible number of fuzzy rules. The structure
identification method under consideration is based on
clustering, cell map approximation, and shape refinement using
GA. In order to highlight the performance of the structure
identification, its modeling performance is compared with that
obtained without structure identification.

This paper is organized as follows: Section 2 reviews the
neuro-fuzzy systems. In Section 3, we address the structure
identification of a neuro-fuzzy model using GA and present a
method to measure the degree of inconsistency of a fuzzy
rulebase. Section 4 presents the simulation results using a
couple of illustrative examples. Section V provides concluding
remarks.

2. Neuro-Fuzzy Systems
Fuzzy inference systems provide a computing framework

based on the concepts of fuzzy sets, fuzzy rules, and fuzzy
reasoning. The basic structure of the fuzzy inference systems
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consists of a fuzzy rulebase, a reasoning mechanism, and a
defuzzification. A fuzzy rulebase is a set of fuzzy if-then rules
that are expressed in the following form:

Rule 1: T (x is All Yand ... and (x,, is A,l, ), then y is ql,

: (1)
Rule p: If (x is 4{)and ...and (x,is A} ), theny is g,

where x; (15j<n) are the input variables, y is the output variable

Suppose that we have two fuzzy rules where each fuzzy rule
has two inputs and a single output. The architecture of the
corresponding neuro-fuzzy system is shown in Fig. 1. The
input term node denoted as A ji
produces the output which is the degree of matching between x;

i)
and its corresponding membership function. If we use the

accepts x; as the input and

Gaussian membership functions for 4 ! the output of the input
term node is given by

‘uAj (x_/):exp -
, ()
where cji and aji are called the premise parameters. The ith

node in the second layer produces the output that represents the
firing strength of the ith rule:

Ri(x) = ﬁlyA,; x)) 3)
J= J

The output term node in the third layer computes the
normalized firing strength and provides the computed value to
the last layer that acts as the defuzzifier. If we use the center of
gravity defuzzification from local centroids, the output of this
layer can be written as

2 n
y= ZC/'R,-/ R;, 4
i=1 J=1
where p denotes the number of fuzzy rules and » represents the
number of input variables.

Input Ouput
term nodes term nodes

Defuzzifier

Rule nodes

Xy

Lo TR GR,
R+R,

T layer 2 layer 3 T

layer 1 layer 4

Fig. 1. Neuro-fuzzy system

3. Neuro-Fuzzy Modeling

3.1 Structure identification using genetic algorithm

Structure identification of the neuro-fuzzy model, which
determines a global function structure for a nonlinear process
to be modeled, deals with two problems: input variables
selection and input space partitioning. The problem of input
variables selection is to select a set of input variables that affect
the output of a system. In most cases, a finite number of
possible candidates are assumed to be given. The problem of
input space partitioning, on the other hand, is to find a set of
fuzzy partitions that are either overlapped or disjoint or both.
Although both problems are equally important, we mainly deal
with the problem of input space partitioning in this paper.

The structure identification in general and the input space
partitioning in particular are imperative for improving
learning/operation efficiency of the neuro-fuzzy models.
Without solving the problem of input space partitioning, what
we can do is to make an educational guess on the number of
fuzzy partitions and to initialize the associated parameters
either intuitively or randomly. However, in this way, some
neuro-fuzzy models do not exhibit an acceptable accuracy.
Furthermore, among the models which have acceptable
accuracies, most of them have many inconsistent rules. The
inconsistent rules sacrifice one of the advantages of the neuro-
fuzzy model, since they make it difficult to further use the
extracted rules after the modeling process.

Training data

Input space partitioning

I:lnitial clustering ]
Eell map construction —|

Shape refinement
using GAs

Result of partitioning

Parameter identiﬁcation—l c=c+l

Model

Model validation ?

Yes

| Neuro-fuzzy model |

Fig. 2. Procedure of the structure identification of neuro-fuzzy
modeling
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In this section we shall review a method to partition the input
space using genetic algorithm which was proposed in [4]. Fig.
2 illustrates the flow chart of the proposed input space
partitioning method that consists of three steps: initial
clustering, cell map construction, and shape refinement. As
shown in Fig. 2, the method starts with the minimum number
of clusters, i.e., ¢=2 and then increments it until the identified
model satisfies the prespecified conditions.

3.1.1 Initial Clustering and Projection

The initial clustering clusters the output data and projects the
resultant clusters into the input space. For the initial clustering,
we adopt the method presented in [1] which uses the fuzzy c-
means algorithm [6]. As a result of the clustering, every output
data yi is associated with the grade of membership belonging to
the fuzzy clusters 51- ’s where i=1,2,...,N and j=1,2,...,c.

ly';ual Ot )ty o) )

where #5/ ( yi) is the grade of the ith data belonging to the jth
cluster, N is the number of data to be clustered, and c¢ is the
number of clusters.

Once we complete the clustering, we project the fuzzy
clusters in the output space onto the input space. For this, we
first transform the fuzzy clusters into the crisp clusters by
taking the fuzzy cluster whose grade of membership of yi is the
maximum. A projected input cluster P; is found by identifying
a group of the input data which are associated with all the
output data belonging to a crisp cluster O;. This leads us to ¢
groups of the input data.

3.1.2 Cell Map Construction

In order to perform the shape refinement, we construct a cell
map from the groups of data in the input space. We decompose
the space of interests X = X|x--xX,, into a finite collection of
rectangular cells.

To label a cell, we inspect all training data that belong to the
cell. If a cell contains at least one data which belongs to the
input cluster Py, then it is called Pj-labeled cell. When we label
the cells, we may have three types of cells: empty cells,
homogeneous cells, and nonhomogeneous cells. The empty cell
does not contain any data at all and thus has no label. The
label,
nonhomogeneous cell has more than one label.

homogeneous cell has only one whereas the

3.1.3 Shape Refinement using GAs

We view the shape refinement as an optimization problem.
In order to build a cost function for the shape refinement, we
first set up a partitioning strategy as follows:

Partitioning Strategy: Minimize the overlaps between the

hyper-rectangular partitions.
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Too much overlap between two hyper-rectangles implies that
they are either inconsistent or redundant with each other. The
partitioning strategy leads us to the following simple cost
function:

S VH,NH) )
1j=i+1

M

g(Hl,Hz,...,Hp)=

I

where p is the number of hyper-rectangles, H; is the ith
hyper-rectangle, and V(H, ,ﬂHj) is the volume of Hlﬂf{,-.

In order to refine the shapes of the input clusters, the
resulting hyper-rectangles have to satisfy the following
constraints:

Constraint 1 (VPC): The Pj-labeled hyper-rectangles must
include all Pr-labeled cells.

Constraint 2 (NIC): A hyper-rectangle must include at least
one nonempty cell.

The problem of shape refinement is to find a set of p hyper-
rectangles which satisfy both VPC and NIC so that they
minimize the cost function given in (6). The penalty method
associates a cost with the coristraint violations:

iyl )=glty, . H ol H ) (D
where y is a penalty coefficient and

0,if\H,,....H tisfies VPC,
Wty 1) [T Uy s ®)
1, otherwise

In order to apply GAs to this optimization problem, the
hyper-rectangles that are the variables of the problem have to
be represented as a string. Suppose that we have p hyper-
rectangles in the » dimensional input space. Since a hyper-
rectangle can be uniquely defined by two pointers on each of
the input variables, p such vectors are concatenated to form a
string of 2np length.

Now, we apply GA search in order to solve the problem. The
detailed procedure of shape refinement that includes the GA
cycle is shown in Fig. 3. The GA cycle involves initialization
of a population, evaluation of the strings in a population, and
genetic operations on a population.

Knowledge based

Initialization

CE\'a]uatiou H Genetic Operations )

o
Stop Yes Result of
GA cyelc?, Partitioning 7

Fig. 3. The GA cycle

GA cycle
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As shown in Fig. 2, the whole procedure of the input space
partitioning starts with the smallest ¢. With a given ¢, we set p
to ¢. When we obtain the results of partitioning for p=c, we
perform the parameter identification, while the parameters of
the neuro-fuzzy model are initialized by using the results of
partitioning. After the parameter identification, we validate the
identified neuro-fuzzy model. If we can accept the model, then
we stop the procedure. Otherwise, we increment p to p+1 and
go to the GA cycle again.

We terminate the execution of the GA cycle after the number
of executions of the GA cycle reaches a prespecified value.
After termination, we select the string that has the minimum
cost function value. Using the string chosen, we initialize the
premise parameters of the neuro-fuzzy model. The centers of
the Gaussian membership functions for the ith hyper-rectangle
(fuzzy rule) are simply given by

i

i i X max

i
_ ~ X jmin
€ = Xjmin

3 ,foralliand j, 9

where x}-mm and x}max are the values of the left edge and

the right edge in the xj-direction, respectively. The width of the
membership function is given by

O'/- _ x_i/'max —C}
T /el

where o is the value of the a-cut fuzzy set which is used for

fori=1,...,pand j=1...,n (10)

constructing the hyper-rectangle. The consequent parameters
associated with the hyper-rectangles are also initialized by
using the centers of the output fuzzy clusters:

qi =v,,if H, isthe P; labeled hyper - rectangle  (11)

We perform the parameter identification with the initial
parameters determined as above. If the identified model is
accurate enough, we stop the modeling process. Otherwise, we
increment p and repeat the GA cycle

3.2 Measure of inconsistency of a fuzzy rulebase

Information (rules) encoded in a neuro-fuzzy system is
interpreted as a set of partitions in the input and output space.
Suppose that a neuro-fuzzy system acquires a fuzzy rule:

If (xj is 4y) and (x, is 45), then y is q, (12)

where two fuzzy sets 41 and 4 of X| and X, are shown in Fig.
4. The associated o-cut sets Ay, and Ay, are the crisp sets
of elements which belong to the fuzzy sets 4; and A»,
respectively:

A= 0| 1y () 2. (13.)

AM:{xz GXZ‘,uAZ(xz)Za}, (13.b)

where 0 < oo < 1. To obtain the hyper-rectangular partition
which represents the premise part of the fuzzy rule, we first

construct the cylindrical extension c(4],) and c(A4y,) with the
bases A1, and A, respectively, and then find the intersection
of the supports of the cylindrical extensions:

H{a)=S(e(A1g )1S(c(Azq)) - (14)

It should be noted that the shape of the partition defined in
XixXp is hyper-rectangular.

Fuzzy rules are allowed to be inconsistent to some degree in
nature. Then to what degree are a set of fuzzy rules inconsistent
with each other? To answer this question we need to define a
measure of inconsistency. Such measure was first given by
Pedrycz [7] in which a degree of difference between two fuzzy
sets was expressed as the possibility measure of the fuzzy sets.
Suppose that a neuro-fuzzy system implements a fuzzy
rulebase given in (1). The possibility measure of two fuzzy sets
which reflects the extent to which they coincide or overlap is
given by

Pass(A,’;‘A,{)= sup {min[,qu_ (xk),yAAj_ (xk)ﬂ , (1%)

X eX;

where X} is the universe of discourse of A, and A,{. The
degree of inconsistency between two rules is defined as

. il 4J ol i ils
DIC, (i, j) = mkm[P OSS(A"‘A"H’ it =02,
0, otherwise

where Ay=(qmaX — GminYp and £ = 1,2,...n. In addition, the
degree of inconsistency for a fuzzy rulebase is given by

7 p
DIC,,(f)=% XDIC,(i.j:p),

(17.a)
i=1j=i+1
where DIC,, is given by
Lif DIC, (i, j)=
pIC,(ij: B)=1" r,(l Nz (17.b)
0, otherwise.

DIC,p(B) in (17.a) simply implies the number of pairs of
fuzzy rules whose degree of inconsistency is larger than .
Here, we normally choose 3 which should be larger than 0.5,
since some inconsistencies between fuzzy rules are natural
phenomena.

It is obvious that, as DIC,p(B) becomes larger, the neuro-
fuzzy model is less of a knowledge representation scheme,
rather it is more of a black-box model such as neural networks.
It should be also noted that there might be many other ways to
define a measure of inconsistency for a fuzzy rulebase. One
example is that 1 in (17.b) can be replaced with DIC,(i,j). The
similarity measure of fuzzy rules can provide another
alternative to define a measure of inconsistency [8].
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S(c(Au))

S(c(Ay))

Fig. 4. A fuzzy rule as a hyper-rectangle

4. Simulation Results

This section presents simulation results of the proposed
method in order to validate our claim that the structure
identification method presented can reduce the degree of
inconsistency of the fuzzy rulebase of a neuro-fuzzy model. For
this, we use two examples: fuzzy system reproduction [1] and
modeling of the process of a gas furnace [9].

4.1 Fuzzy system reproduction
In this example, we consider a reproduction problem which
builds a neuro-fuzzy model of a fuzzy system [1]. The fuzzy

system under consideration has 9 fuzzy rules as shown in Fig. 5.

Each input variable has three linguistic values which are
represented by the Gaussian membership functions and the
output variable takes singletons.

g r:° Ei 1.0 2.0

P T I 0.0
N
AN /

~~~~~~~

2.0

.
os N/ AN //
N /
0.4 / K
0.2 - \\\ 7 N
05 o 0.5 ~|

Fig. 5. The fuzzy rulebase of the fuzzy system to be
identified

For comparison purpose, we first build neuro-fuzzy models
without structure identification. Thus, we have to determine a
type of fuzzy partitions, the number of fuzzy partitions (fuzzy
rules), and a set of initial parameters through trial and error.

To collect a set of training data, we apply the random inputs
which are uniformly distributed in the range of [-1,1]x[-1,1].
We adjust the parameters in a neuro-fuzzy model using the
back propagation method presented in [10,11]. The initial
parameters (c} 's, 0'} 's and ¢''s) are randomly chosen and the
back propagation algorithm employs a step size of 0.02 and is
terminated after 1000 epochs.
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Using the same training data and different sets of initial
parameters, we build 100 neuro-fuzzy models in which 50
models have 5 fuzzy rules and the remaining 50 are of 7 rules.
The accuracy of an identified neuro-fuzzy model is measured
by the mean absolute error (MAE) of the output of the model:

a=—3]y' -7 (18)
| I— - )
N =l

where N is the number of dara, y’ is the ith actual output, and
)7" is the ith model output. Table 1 lists the number of the
identified models whose accuracies are in a particular range. As
expected, it is likely that we can build a more accurate fuzzy
model when the number of rules becomes larger. The accuracy
of a model is very sensitive to the initial parameters, even
though the sensitivity becomes less as the number of rules
increases. As the number of fuzzy rules increases, it becomes
more difficult to have a model whose rules are consistent with
each other. It can be also seen from this table that DIC,, is not
directly related to the accuracy of the model; some accurate
models may have a larger DIC,;, and vice versa.

Table 1. Performance of the neuro-fuzzy models identified
from random initial parameters

Range of | (0.0, |(0.01, (0.02, 0.03, (0.04, |(0.05, (0.06,
Accuracy |0.01] |0.02] 0.03] 0.04] 0.05] 10.06] 0.20]

Smles |00 [225 [10Q29) [3¢@0) [5@0 [1527) |152.2)

Trles  {0(0) [12¢43) [145.4) |11 a6) |4a5) |32 |6023)

The number in parenthesis indicates the average D](frb(ﬁ:0.6) of the models

whose accuracy is in the range.

In order to examine how the parameter identification
procedure has partitioned the input space, we display the
layouts of resultant partitions of some models in Fig. 6. In this
figure, all hyper-rectangles are constructed by setting o in
(14) to 0.2. Fig. 6(a) and Fig. 6(b) are the partitioning results of
the 5-rule model of the best MAE and the 7-rule model of the
best MAE, respectively.

X ) ’
(a) (b)
Fig. 6. Partitions of neuro-fuzzy models whose initial
parameters are randomly chosen. (a) A 5-rule fuzzy model
(MAE=0.0165, DIC,,(3=0.6)=3). (b) A 7-rule fuzzy model
(MAE=0.0127, DIC,,(3=0.6)=5).
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We can make several interesting observations from Fig. 6.
First, the layout of the partitions depends heavily on the initial
parameters. The fuzzy rules identified from one set of initial
parameters are quite different from those of the other sets of
initial parameters. Second, some rules cover the whole region
on which all input training data occur. The property of the local
representation of fuzzy rules disappears in this case. Finally,
there may be some inconsistent rules. For instance, a couple of

hyper-rectangles contained in the largest hyper-rectangle in Fig.

6(a) are potentially inconsistent.

The observation that we often end up with some inconsistent
rules when random initial weights are used for parameter
identification of the neuro-fuzzy models is not new. In fact,
there has been a debate on the inconsistent rules. Bien and Yu
[12] showed that a fuzzy model with some inconsistent rules
could still be acceptable as far as the accuracy was the only
concern. We may say that we can confirm Bien and Yu's claim
through the above simulation. Wang and Mendel [13] proposed
a method to select a rule among a group of inconsistent rules
when they built a neuro-fuzzy model from both linguistic and
numerical information. Jang in [14] suggested that the
constrained gradient descent could be employed to maintain the
g-completeness for the grid partitions.

Next, we build neuro-fuzzy models using the proposed
structure identification based on GA. We have a set of training
data which consists of 200 samples collected above. In order to
construct the cell map, we have to cluster the output data by
using FCM algorithm. In this example, we use ¢=2 and m=2
for the FCM parameters. After clustering, we project the output
fuzzy clusters into the input space. Considering the space of
interests X=[-0.9,0.9]x[-0.9,0.9], we construct the cell map of
10x10 cells.

Next stage is for the GA cycle to provide a set of scatter
partitions from a given cell map. Since the cell map has been
constructed by setting ¢ to 2, we start with p=2. For each GA
cycle, we set the number of strings in the population to 200.
The length of each string is 4p since the input dimension is 2.
To evaluate the strings, we use the cost function given in (7).
For reproduction, either the generational replacement technique
or the steady state reproduction without duplicates is employed
depending on the property of the initial population. The
generational replacement uses 0.78 and 0.1 for the crossover
rate and the mutation rate, respectively, while in the steady
state reproduction 1.0 and 0.1 are employed for the crossover
rate and the mutation rate. For all the p's, the GA cycles are
terminated after 20000 generations.

Once we obtain the results of partitioning, we next identify
the parameters of the neuro-fuzzy models using the back
propagation algorithm. The associated parameters with the
back propagation are set to the same as in above. In this

procedure, we initialize the parameters of the neuro-fuzzy

model by using (9)-(11). After the parameter identification, we
investigate the consistency of the rulebase. Fig. 7 shows the
fuzzy partitions after the parameter identification for p=5 and
p=7. It can be seen from this figure that the degrees of
inconsistency of the models identified by the proposed method
are significantly decreased, i.e., DIC,5(3=0.6) = 1 for p=5 and
DIC,p(=0.6) = 0 for p=7. When compared with the
partitioning results shown in Fig. 6, the partitions obtained by
the proposed method are more like a structured knowledge
representation in which each fuzzy rule describes each local

region.
247
& 241
012
{ ' ’ i . ¥
(a)
om
003 18 s
Fa .

(b)
Fig. 7. Results of partitioning after parameter identification
(0=0.2). (a) p=5. (b) p=T.

The accuracies of the neuro-fuzzy models for each p in terms
of MAE are assessed after the parameter identification. They
are listed in Table 2. As expected, the accuracy of the model
increases as the number of rules increases in most cases except
for p=4. If the given accuracy requirement is not severe, say,
MAE=0.03, then the obtained results suggest that the random
initialization is a feasible approach. A reasonable number of
trials can provide a model of a better performance compared
with the model built on the proposed method. However, if the
accuracy requirement is getting stricter, for instance, MAE is
less than 0.01, then improvement obtained by the proposed
method becomes clear. None of 100 models initialized
randomly is as accurate as the model for ¢=2 and p=7.
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Table 2. Accuracies of the neuro-fuzzy models identified from
the initial parameters obtained by the input space partitioning

p=2 p=3 p=4 p=5 p=6 p=7
MAE 0.1822 0.0581 0.0808 0.0354 0.0100 0.0086
4.2 Box and Jenkins’ Gas Furnace
In this example, we apply the proposed structure

identification method to a nonlinecar dynamical process
modeling using the gas furnace data of Box and Jenkins [9].
The data set consists of 296 pairs of input and output
measurements. The input u(k) is the gas flow rate into the
furnace and the output (k) is the concentration of CO7 in the
outlet gas. The sampling interval is 9 seconds.

We are assumed to know that u(k-4) and y(k-1) are the input
variables and the structure of the process is as follows:

y(k) = Fluk—4), y(k-1)). (19)

In this structure, we could generate 292 training samples and
performed the fuzzy clustering on the output training data,
while setting m to 2 in the FCM algorithm. After clustering, we
projected the output clusters into the input space and
constructed the cell map.

To run each GA cycle, we set the number of strings in a
population to 200. For all the GA cycles, the steady state
reproduction without duplicates with 1.0 as the crossover rate
and 0.1 as the mutation rate was used. We terminated the GA
cycle after 20,000 generations. Each GA cycle for a particular ¢
and p took less than five minutes on a Sun Sparc 20
workstation.

The GA cycles produced the results of partitioning for
different ¢'s and different p's. Each result of partitioning from a
pair of ¢ and p made us to initialize the parameters of the
neuro-fuzzy model of the corresponding structure. Using the
initial parameters obtained, we identified the parameters of the
model. The mean square error (MSE) was used for measuring
the accuracy of the model:

1N A
ey=— Y- 30f . (20)
N g1

where N=292. For comparison purpose, we built 50 models
with § rules using the random initialization scheme. None of
them satisfied the accuracy requirement of MSE less than 0.11
in this case, and the best MSE was 0.1148. To examine the
degree of inconsistency of these models, we evaluated DIC,5(
=0.8)'s by using (17). DIC,5(B=0.8) of the model with the best
MSE was 4 and the average of DIC,,($=0.8) of those models
was 4.3. A comparison of these models with the model for ¢=4
and p=8 clearly indicates that the proposed method can build a
more accurate model with more consistent rules. In Fig. 8, we
show the layouts of the partitioning of the input space for c=4
and p=8 after the parameter identification.
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Fig. 8. Partitions of the model (¢=4 and p=8) after the
parameter identification (0=0.2)

Conclusions

In this paper, we reviewed the structure identification of
neuro-fuzzy modeling using genetic algorithms, which guided
us to build a better model in “erms of the model's efficiency and
the model's accuracy. In addition, we addressed the role of
structure identification of neuro-fuzzy modeling as a tool to
reduce the degree of inconsistency of the fuzzy rulebase
learned by the modeling process. Maintaining the measure of
inconsistency is especially important when the identified fuzzy
rules should be articulated for further uses in practice. In this
case, we prefer our neuro-fuzzy model to be more like a
structured knowledge representation scheme. In Section 4, we
presented two modeling protlems in order to justify our claims.
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