• Title/Summary/Keyword: Fuzzy Set-Fuzzy Systems

Search Result 667, Processing Time 0.026 seconds

Fuzzy Decision Making System

  • Karpovsky, Ephim Ja
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.806-809
    • /
    • 1993
  • This paper focuses on the usage of the fuzzy set theory in decision making systems. The approach to calculation of generalized membership function, based on application of method of principal components is proposed. For solving of the problem of fuzzy forecasting the development of Bayes procedure is used. The structure of decision making system, in which following procedures are fulfilled, is discussed.

  • PDF

Fuzzy r-Generalized Open Sets and Fuzzy r-Generalized Continuity (퍼지 r-일반 열린 집합과 퍼지 r-일반 연속성에 관한 연구)

  • Min, Won-Keun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.5
    • /
    • pp.695-698
    • /
    • 2009
  • In this paper, we introduce the concept of fuzzy r-generalized open sets which are generalizations of fuzzy r-open sets defined by Lee and Lee [2] and obtain some basic properties of their structures. Also we introduce and study the concepts of fuzzy r-generalized continuous mapping, fuzzy r-generalized open mapping and fuzzy r-generalized closed mapping.

A Simple Method for Solving Type-2 and Type-4 Fuzzy Transportation Problems

  • Senthil Kumar, P.
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.16 no.4
    • /
    • pp.225-237
    • /
    • 2016
  • In conventional transportation problem (TP), all the parameters are always certain. But, many of the real life situations in industry or organization, the parameters (supply, demand and cost) of the TP are not precise which are imprecise in nature in different factors like the market condition, variations in rates of diesel, traffic jams, weather in hilly areas, capacity of men and machine, long power cut, labourer's over time work, unexpected failures in machine, seasonal changes and many more. To counter these problems, depending on the nature of the parameters, the TP is classified into two categories namely type-2 and type-4 fuzzy transportation problems (FTPs) under uncertain environment and formulates the problem and utilizes the trapezoidal fuzzy number (TrFN) to solve the TP. The existing ranking procedure of Liou and Wang (1992) is used to transform the type-2 and type-4 FTPs into a crisp one so that the conventional method may be applied to solve the TP. Moreover, the solution procedure differs from TP to type-2 and type-4 FTPs in allocation step only. Therefore a simple and efficient method denoted by PSK (P. Senthil Kumar) method is proposed to obtain an optimal solution in terms of TrFNs. From this fuzzy solution, the decision maker (DM) can decide the level of acceptance for the transportation cost or profit. Thus, the major applications of fuzzy set theory are widely used in areas such as inventory control, communication network, aggregate planning, employment scheduling, and personnel assignment and so on.

Determination of the Input/Output Relations and Rule Generation for Fuzzy Combustion Control System of Refuse Incinerator using Rough Set Theory (Rough Set 이론을 이용한 쓰레기 소각로의 퍼지제어 시스템을 위한 입출력 관계 설정 및 규칙 생성)

  • 방원철;변증남
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.11a
    • /
    • pp.81-86
    • /
    • 1997
  • It is proposed, for fuzzy combustion control system of refuse incinerator to find the relationship between inputs and outputs and to generate rules to control by using rough set theory. It is not easy to find out the corresponding inputs for each output and the control rules with incomplete or imprecise information consisting expert knowledge, process and manipulator values in the field, and operation manual for the given system. Most decision problems can be formulated employing decision table formalism. A decision table on fuzzy combustion control system for refuse incinerator is simplified and produces control(rules). The I/O realtions and the control rules found by rough set theory are compared with the previous result.

  • PDF

A Novel Image Segmentation Method Based on Improved Intuitionistic Fuzzy C-Means Clustering Algorithm

  • Kong, Jun;Hou, Jian;Jiang, Min;Sun, Jinhua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.6
    • /
    • pp.3121-3143
    • /
    • 2019
  • Segmentation plays an important role in the field of image processing and computer vision. Intuitionistic fuzzy C-means (IFCM) clustering algorithm emerged as an effective technique for image segmentation in recent years. However, standard fuzzy C-means (FCM) and IFCM algorithms are sensitive to noise and initial cluster centers, and they ignore the spatial relationship of pixels. In view of these shortcomings, an improved algorithm based on IFCM is proposed in this paper. Firstly, we propose a modified non-membership function to generate intuitionistic fuzzy set and a method of determining initial clustering centers based on grayscale features, they highlight the effect of uncertainty in intuitionistic fuzzy set and improve the robustness to noise. Secondly, an improved nonlinear kernel function is proposed to map data into kernel space to measure the distance between data and the cluster centers more accurately. Thirdly, the local spatial-gray information measure is introduced, which considers membership degree, gray features and spatial position information at the same time. Finally, we propose a new measure of intuitionistic fuzzy entropy, it takes into account fuzziness and intuition of intuitionistic fuzzy set. The experimental results show that compared with other IFCM based algorithms, the proposed algorithm has better segmentation and clustering performance.

Complex Fuzzy Logic Filter and Learning Algorithm

  • Lee, Ki-Yong;Lee, Joo-Hum
    • The Journal of the Acoustical Society of Korea
    • /
    • v.17 no.1E
    • /
    • pp.36-43
    • /
    • 1998
  • A fuzzy logic filter is constructed from a set of fuzzy IF-THEN rules which change adaptively to minimize some criterion function as new information becomes available. This paper generalizes the fuzzy logic filter and it's adaptive filtering algorithm to include complex parameters and complex signals. Using the complex Stone-Weierstrass theorem, we prove that linear combinations of the fuzzy basis functions are capable of uniformly approximating and complex continuous function on a compact set to arbitrary accuracy. Based on the fuzzy basis function representations, a complex orthogonal least-squares (COLS) learning algorithm is developed for designing fuzzy systems based on given input-output pairs. Also, we propose an adaptive algorithm based on LMS which adjust simultaneously filter parameters and the parameter of the membership function which characterize the fuzzy concepts in the IF-THEN rules. The modeling of a nonlinear communications channel based on a complex fuzzy is used to demonstrate the effectiveness of these algorithm.

  • PDF

A Study on an Extended Fuzzy Cluster Analysis (확장된 Fuzzy 집락분석방법에 관한 연구)

  • Im Dae-Heug
    • Management & Information Systems Review
    • /
    • v.9
    • /
    • pp.25-39
    • /
    • 2002
  • We consider the Fuzzy clustering which is devised for partitioning a set of objects into a certain number of groups by assigning the membership probabilities to each object. The researches carried out in this field before show that the Fuzzy clustering concept is involved so much that for a certain set of data, the main purpose of the clustering cannot be attained as desired. Thus we propose a new objective function, named as Fuzzy-Entroppy Function in order to satisfy the main motivation of the clustering which is classifying the data clearly. Also we suggest Mean Field Annealing Algorithm as an optimization algorithm rather than the. ISODATA used traditionally in this field since the objective function is changed. We show the Mean Field Annealing Algorithm works pretty well not only for the new objective function but also for the classical Fuzzy objective function by indicating that the local minimum problem resulted from the ISODATA can be improved.

  • PDF

The Design Methodology of Fuzzy Controller by Means of Evolutionary Computing and Fuzzy-Set based Neural Networks

  • Roh, Seok-Beom;Oh, Sung-Kwun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.438-441
    • /
    • 2004
  • In this study, we introduce a noble neurogenetic approach to the design of fuzzy controller. The design procedure dwells on the use of Computational Intelligence (CI), namely genetic algorithms and Fuzzy-Set based Neural Networks (FSNN). The crux of the design methodology is based on the selection and determination of optimal values of the scaling factors of the fuzzy controllers, which are essential to the entire optimization process. First, the tuning of the scaling factors of the fuzzy controller is carried out by using GAs, and then the development of a nonlinear mapping for the scaling factors is realized by using GA based FSNN. The developed approach is applied to a nonlinear system such as an inverted pendulum where we show the results of comprehensive numerical studies and carry out a detailed comparative analysis.

  • PDF

A Study of Simulation Method and New Fuzzy Cluster Analysis (새로운 Fuzzy 집락분석방법과 Simulation기법에 관한 연구)

  • Im Dae-Heug
    • Management & Information Systems Review
    • /
    • v.14
    • /
    • pp.51-65
    • /
    • 2004
  • We consider the Fuzzy clustering which is devised for partitioning a set of objects into a certain number of groups by assigning the membership probabilities to each object. The researches carried out in this field before show that the Fuzzy clustering concept is involved so much that for a certain set of data, the main purpose of the clustering cannot be attained as desired. Thus we Propose a new objective function, named as Fuzzy-Entroppy Function in order to satisfy the main motivation of the clustering which is classifying the data clearly. Also we suggest Mean Field Annealing Algorithm as an optimization algorithm rather than the ISODATA used traditionally in this field since the objective function is changed. We show the Mean Field Annealing Algorithm works pretty well not only for the new objective function but also for the classical Fuzzy objective function by indicating that the local minimum problem resulted from the ISODATA can be improved.

  • PDF