• Title/Summary/Keyword: Fundamental limit

Search Result 245, Processing Time 0.021 seconds

ON ω-LIMIT SETS AND ATTRACTION OF NON-AUTONOMOUS DISCRETE DYNAMICAL SYSTEMS

  • Liu, Lei;Chen, Bin
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.4
    • /
    • pp.703-713
    • /
    • 2012
  • In this paper we study ${\omega}$-limit sets and attraction of non-autonomous discrete dynamical systems. We introduce some basic concepts such as ${\omega}$-limit set and attraction for non-autonomous discrete system. We study fundamental properties of ${\omega}$-limit sets and discuss the relationship between ${\omega}$-limit sets and attraction for non-autonomous discrete dynamical systems.

SEQUENTIAL COMPACTNESS AND SEMICOMPACTNESS

  • Myung, Jae Deuk;Choi, Hee Chan
    • Korean Journal of Mathematics
    • /
    • v.5 no.2
    • /
    • pp.211-215
    • /
    • 1997
  • In this paper, we introduce two notions of compactness defined by sequential convergence and compare them.

  • PDF

Evaluation of Tube Hydroformability (Tube Hydroforming 공정의 성형성 평가)

  • 김영석;조흥수;박춘달;김영삼;조완제
    • Transactions of Materials Processing
    • /
    • v.9 no.6
    • /
    • pp.604-614
    • /
    • 2000
  • In this paper, the mechanical characteristics and fundamental mechanism of a roll-formed tube during the hydroforming process are investigated in order to obtain the ewly localization of the tube hydroforming skills which are the core production techniques for the super light weight and high safety of the car body. Also, the theoretical influences of the material variables and the processes on the formability in the tube hydroforming are studied. In addition, the techniques to evaluate the forming limit of the bulging process of a tube are developed.

  • PDF

SEPARABLE MINIMAL SURFACES AND THEIR LIMIT BEHAVIOR

  • Daehwan Kim;Yuta Ogata
    • Journal of the Korean Mathematical Society
    • /
    • v.61 no.4
    • /
    • pp.761-778
    • /
    • 2024
  • A separable minimal surface is represented by the form of f(x) + g(y) + h(z) = 0, where f, g and h are real-valued functions of x, y and z, respectively. We provide exact equations for separable minimal surfaces with elliptic functions that are singly, doubly and triply periodic minimal surfaces and completely classify all them. In particular, parameters in the separable minimal surfaces change the shape of the surfaces, such as fundamental periods and its limit behavior, within the form f(x) + g(y) + h(z) = 0.

Optimum design of multi-span composite box girder bridges using Cuckoo Search algorithm

  • Kaveh, A.;Bakhshpoori, T.;Barkhori, M.
    • Steel and Composite Structures
    • /
    • v.17 no.5
    • /
    • pp.705-719
    • /
    • 2014
  • Composite steel-concrete box girders are frequently used in bridge construction for their economic and structural advantages. An integrated metaheuristic based optimization procedure is proposed for discrete size optimization of straight multi-span steel box girders with the objective of minimizing the self-weight of girder. The metaheuristic algorithm of choice is the Cuckoo Search (CS) algorithm. The optimum design of a box girder is characterized by geometry, serviceability and ultimate limit states specified by the American Association of State Highway and Transportation Officials (AASHTO). Size optimization of a practical design example investigates the efficiency of this optimization approach and leads to around 15% of saving in material.

Electrically Small Antenna with Bandwidth over 2/Q Limit (2/Q 대역폭 한계치를 넘는 소형 안테나 설계)

  • Lee, Chul-Hee;Choo, Ho-Sung;Park, Ik-Mo
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2005.11a
    • /
    • pp.255-258
    • /
    • 2005
  • In this paper, we verify that the bandwidth of the optimized disk-loaded monopole antenna with electromagnetically coupled feed obtained using a genetic algorithm is broader than the theoretical bandwidth limit of 2/Q by simulation as well as by measurement. The measured bandwidth of the optimized antenna (kr : 0.599) is about 42% from 380 MHz to 580 MHz (VSWR<5.8). The efficiency measurement of the antenna is over 90% for the frequency band of operation.

  • PDF

NOTE ON STRONG LAW OF LARGE NUMBER UNDER SUB-LINEAR EXPECTATION

  • Hwang, Kyo-Shin
    • East Asian mathematical journal
    • /
    • v.36 no.1
    • /
    • pp.25-34
    • /
    • 2020
  • The classical limit theorems like strong law of large numbers, central limit theorems and law of iterated logarithms are fundamental theories in probability and statistics. These limit theorems are proved under additivity of probabilities and expectations. In this paper, we investigate strong law of large numbers under sub-linear expectation which generalize the classical ones. We give strong law of large numbers under sub-linear expectation with respect to the partial sums and some conditions similar to Petrov's. It is an extension of the classical Chung type strong law of large numbers of Jardas et al.'s result. As an application, we obtain Chung's strong law of large number and Marcinkiewicz's strong law of large number for independent and identically distributed random variables under the sub-linear expectation. Here the sub-linear expectation and its related capacity are not additive.

Development of TTX(Tilting Train Express)for speed-up the existing main line (한국형 기존선 고속화 틸팅열차 연구개발사업)

  • Song Dal-ho;Choe Kangyoun;Han Seong-ho
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.3-5
    • /
    • 2004
  • In order to speed up basic concept is to enhance high speed, curve limit speed, cross limit speed, acceleration/deceleration speed. It is important to optimal interface fundamental technology of vehicle, rail, electrical power, and signal system. Tilting train has advantage minimizing investment cost of infra railway system for increasing train limit speed in curve. the developed tilting train should be operated to commercial service speed 180Km/h of 200Km/h at KNR upgrade railroad. This paper proposed the basic model of system engineering for developing of TTX, tilting EMU (maximum operation speed : 180km/h) with speed-up of conventional railway system.

  • PDF

Design of Basic model of system engineering for developing Tilting Train (틸팅차량개발 시스템엔지니어링체계 기본모델연구)

  • Han, Seong-Ho;Lee, Su-Gil;Shin, Gwang-Bok;You, Won-Hee;Kim, Gin-Hun
    • Proceedings of the KIEE Conference
    • /
    • 2002.11d
    • /
    • pp.350-352
    • /
    • 2002
  • In order to speed up basic concept is to enhance high speed, curve limit speed, cross limit speed, acceleration/deceleration speed. It is important to optimal interface, fundamental technology of vehicle, rail, electrical power, and signal system. Tilting train has advantage minimizing investment cost of infra railway system for increasing train limit speed in curve. the developed tilting train should be operated to commercial service speed 180km/h of 200km/h at KNR upgrade railroad. This paper proposed the basic model of system engineering for developing of tilting EMU(maximum operation speed : 180km/h) with speed-up of conventional railway system.

  • PDF

Introduction of development speed-up project to existing main line (기존선 속도향상 실용기술개발 사업소개)

  • Koo Dong-hae;Han Seong-ho
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.26-29
    • /
    • 2004
  • In order to speed up basic concept is to enhance high speed, curve limit speed, cross limit speed, acceleration/deceleration speed. It is important to optimal interface fundamental technology of vehicle, rail, electrical power, and signal system. Tilting train has advantage minimizing investment cost of infra railway system for increasing train limit speed in curve. the developed tilting train should be operated to commercial service speed 180Km/h of 200Km/h at KNR upgrade railroad. This paper proposed the basic model of system engineering for developing of tilting EMU (maximum operation speed : 180km/h) with speed-up of conventional railway system.

  • PDF