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ON ω-LIMIT SETS AND ATTRACTION OF

NON-AUTONOMOUS DISCRETE DYNAMICAL SYSTEMS

Lei Liu and Bin Chen

Abstract. In this paper we study ω-limit sets and attraction of non-
autonomous discrete dynamical systems. We introduce some basic con-
cepts such as ω-limit set and attraction for non-autonomous discrete sys-

tem. We study fundamental properties of ω-limit sets and discuss the
relationship between ω-limit sets and attraction for non-autonomous dis-
crete dynamical systems.

1. Introduction

Throughout this paper, N denotes the natural number set and let Z+ = N∪
{0}. Let X be a topological space, fn : X → X for each n ∈ N be a continuous
map and f1,∞ be the sequence (f1, f2, . . . , fn, . . .). The pair (X, f1,∞) is referred
to as a non-autonomous discrete dynamical system [12]. If X is compact, then
(X, f1,∞) is called a compact non-autonomous system. Define

fn
1 := fn ◦ fn−1 ◦ · · · ◦ f2 ◦ f1 for all n ∈ N,

and f0
1 := idX , the identity on X. In particular, when f1,∞ is a constant

sequence (f, . . . , f, . . .), the pair (X, f1,∞) is just classical discrete dynamical
system (autonomous discrete dynamical system) (X, f). The orbit initiated
from x ∈ X under f1,∞ is defined by the set

γ(x, f1,∞) = {x, f1(x), f2
1 (x), . . . , f

n
1 (x), . . .}.

Its long-term behaviors are determined by its limit sets.
In past ten years, a large number of papers have been devoted to dynamical

properties in non-autonomous discrete systems. Kolyada and Snoha [12] gave
definition of topological entropy in non-autonomous discrete systems, Kolyada,
Snoha and Trofimchuk [13] discussed minimality of non-autonomous dynamical
systems, Kempf [11] and Canovas [5] studied ω-limit sets in non-autonomous
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discrete systems respectively. Krabs [14] discussed stability in non-autonomous
discrete systems, Huang, Wen and Zeng ([9, 10]) studied topological pressure
and pre-image entropy of non-autonomous discrete systems, Shi and Chen [21]
and Oprocha and Wilczynski [19] discussed chaos in non-autonomous discrete
systems.

The ω-limit sets give fundamental information about the asymptotic be-
havior of a dynamical system and its concept for classical discrete dynamical
system (autonomous discrete dynamical system) was introduced by Block and
Coppel ([1, 3]). The attraction is an important property in dynamical system,
for example, asymptotically stable set [3] and attractor ([8, 20, 22]) belong to
the problem of attraction. In recent years, Mimna and Steele [17] discussed ω-
limit sets and asymptotically stable sets for semi-homeomorphisms, Aniello and
Steele [2] discussed the stability of ω-limit sets, Oprocha [18] studied asymp-
totically stable sets in continuous dynamical systems and Braga and Souza [4]
studied attraction for semigroup actions. There are classes of dynamical sys-
tems for which the behavior of trajectories of sets seems in some sense much
simpler than that of trajectories of points. For example, Marzocchi and Necca
[15] gave the definition of ω-limit set which describes the long-term behavior of
trajectories of sets. Let (X, f) be an autonomous discrete system and let B be
a nonempty subset of X. Define ω(B, f) as the set of limit points of the orbit

γ(B, f), i.e., ω(B, f) =
∩

m∈Z+
γm(B, f), where γm(B, f) denotes the positive

orbit through B starting at time m.
Motivated by the idea of Marzocchi and Necca’s concept of ω-limit set, in this

paper we give the concepts of ω-limit set and attraction for non-autonomous
discrete system. The definition of ω-limit set describes the long-term behavior
of trajectories of sets but not points. Our purpose is to study the fundamental
properties of ω-limit sets and attraction for non-autonomous discrete dynamical
systems, e.g., the set operations of ω-limit set (Proposition 3.1) and attraction
is preserved by the conjugated systems (Theorem 3.1). In particular, we give
a sufficient condition for ω-limit set of non-autonomous discrete system is a
nonempty compact set. Also, we discuss the relationship between the attrac-
tion and ω-limit sets for non-autonomous discrete systems in regular spaces
(Theorem 4.2).

2. Preliminaries

Definition 2.1. Let (X, f1,∞) be a non-autonomous discrete system. For
every B ⊆ X and m ∈ Z+, the set γm(B, f1,∞) =

∪
x∈B{fn

1 (x) : n ≥ m} is
called positive orbit through B starting at time m. If B = {x}, we will write
γm(x, f1,∞) instead of γm({x}, f1,∞). If m = 0, we will omit time index.

Definition 2.2. Let (X, f1,∞) be a non-autonomous discrete system and let
B be a nonempty subset of X. Define ω(B, f1,∞) as the set of limit points of

the orbit γ(B, f1,∞), i.e., ω(B, f1,∞) =
∩

m∈Z+
γm(B, f1,∞), where γm(B, f1,∞)
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denotes the closure of γm(B, f1,∞). If B = {x}, we write ω(x, f1,∞) instead of
ω({x}, f1,∞).

Remark 1. Let (X, f1,∞) be a non-autonomous discrete system and X be a
compact metric space. Then by [7] we may define ω̂(B, f1,∞) as follows:

ω̂(B, f1,∞) = {A ⊆ X : there exists nk → ∞ such that A = Ltk→∞fnk
1 (B)},

where Lt is for the operation of going to topological limit (Ltk→∞Yk = Y if
dH(Y, Yk) → 0 as k → ∞ with dH standing for the Hausdorff metric given
by dH(A,B) = inf{δ > 0 : A ⊆ Uδ(B), B ⊆ Uδ(A)}, where Uδ is the δ-
neighborhood of a set). If B = {x}, then we will write ω̂(x, f1,∞) instead of
ω̂({x}, f1,∞). Furthermore,

ω̂(x, f1,∞) = {y ∈ X : there exists nk → ∞ such that y = lim
k→∞

fnk
1 (x)}.

By Definition 2.2, the sets ω(B, f1,∞) ⊆ X and ω(B, f1,∞) may be empty,
but by Ref. [7], ω̂(B, f1,∞) does not belong to the phase spaceX and is a subset
of the set 2X of all closed subsets of X. If X is a compact metric space, then 2X

is a compact metric space from Michael [16] and Engelking [6]. Furthermore,
we have ω(B, f1,∞) ̸= ∅, ω̂(B, f1,∞) ̸= ∅ and ω(x, f1,∞) = ω̂(x, f1,∞).

Definition 2.3 ([13]). Let (X, f1,∞) be a non-autonomous discrete system.
Set A ⊆ X is said to be invariant if fn

1 (A) ⊆ A for every n ∈ N.

For an autonomous system (X, f), by Block and Coppel [3], if X is a com-
pact space, then ω(x, f) is invariant for every x ∈ X. However, for a non-
autonomous system (X, f1,∞), we have ω(B, f1,∞) cannot be invariant for any
B ⊆ X.

Example 2.1. Let X = [0, 1], fn : [0, 1] → [0, 1] be a sequence of continuous
maps and

fn(x) =


1− 1

n+1 for x = 1
n and n even,

1
n+1 for x = 1− 1

n and n odd,

0, otherwise

for every n ∈ N. Then ω({0}, f1,∞) is not invariant.

From the definition of fn(x), we have

fn
1 (0) =

{ 1
n+1 for n odd,
n

n+1 for n even.

Hence, ω({0}, f1,∞) = ω(0, f1,∞) = {0, 1}. As f1
1 (ω(0, f1,∞)) = f1

1 ({0, 1}) =
{0, 1

2}. Therefore, ω({0}, f1,∞) is not invariant.

Definition 2.4 ([21]). Let (X, f1,∞) be a non-autonomous discrete system.
f1,∞ is said to be k-periodic discrete system if there exists k ∈ N such that
fn+k(x) = fn(x) for every x ∈ X and n ∈ N.
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Let (X, f1,∞) be a k-periodic discrete system for a k ∈ N. Define g :=
fk ◦fk−1 ◦ · · · ◦f1, we say that (X, g) is induced an autonomous discrete system
by k-periodic discrete system (X, f1,∞).

Finally, we need some topological definitions and properties.

Definition 2.5 ([6]). Let X be a topological space. The family {Yi}i∈I has
the finite intersection property if, for every finite subset J of I, the intersection∩

j∈J Yj is a nonempty set.

By Engelking [6], a topological space X is compact if and only if any family
of closed subsets of X satisfying the finite intersection property has a nonempty
intersection.

Theorem 2.1 ([6]). Let X be a regular space and let K be a compact set in X
and C be a closed set in X with K ∩ C = ∅. Then there exist two open sets U
and V in X, with K ⊆ U,C ⊆ V and U ∩ V = ∅.

Corollary 2.1. Let X be a regular space and let K be a compact set in X and
U be a neighborhood of K. Then there exists a closed neighborhood V of K
with V ⊆ U .

Remark 2. Since {x} is compact set, every neighborhood of a point in regular
space contains a closed neighborhood.

3. Fundamental properties of the ω-limit sets and attraction

In this section, we give the definition of attraction and discuss fundamental
properties of the ω-limit set and attraction for non-autonomous discrete system.

Proposition 3.1. Let (X, f1,∞) be a non-autonomous discrete system and
A,B ⊆ X. The following properties hold:

(1) if A ⊆ B, then ω(A, f1,∞) ⊆ ω(B, f1,∞);
(2) ω(A ∩B, f1,∞) ⊆ ω(A, f1,∞) ∩ ω(B, f1,∞);
(3) ω(A ∪B, f1,∞) = ω(A, f1,∞) ∪ ω(B, f1,∞).

Proof. (1) Since A ⊆ B, then for every m ∈ Z+, γm(A, f1,∞) ⊆ γm(B, f1,∞).
Furthermore, we have

γm(A, f1,∞) ⊆ γm(B, f1,∞) and
∩

m∈Z+

γm(A, f1,∞) ⊆
∩

m∈Z+

γm(B, f1,∞).

Hence, ω(A, f1,∞) ⊆ ω(B, f1,∞).
(2) Since A ∩B ⊆ A and A ∩B ⊆ B, by above (1), we have

ω(A ∩B, f1,∞) ⊆ ω(A, f1,∞) and ω(A ∩B, f1,∞) ⊆ ω(B, f1,∞).

Hence, ω(A ∩B, f1,∞) ⊆ ω(A, f1,∞) ∩ ω(B, f1,∞).
(3) Since A ⊆ A ∪ B and B ⊆ A ∪ B, by above (1), ω(A, f1,∞) ⊆ ω(A ∪

B, f1,∞) and ω(B, f1,∞) ⊆ ω(A ∪ B, f1,∞). Hence, ω(A, f1,∞) ∪ ω(B, f1,∞) ⊆
ω(A ∪B, f1,∞).
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To verify ω(A, f1,∞)∪ω(B, f1,∞) ⊇ ω(A∪B, f1,∞), we suppose by contradic-
tion that there exists x ∈ ω(A∪B, f1,∞) such that x /∈ ω(A, f1,∞)∪ω(B, f1,∞).

Since x /∈ ω(A, f1,∞) =
∩

m∈Z+
γm(A, f1,∞), there exists m1 ∈ Z+ such

that x /∈ γm1(A, f1,∞). Furthermore, there exists a neighborhood U of x
such that for every y ∈ U , y /∈ γm1

(A, f1,∞). Similarly, x /∈ ω(B, f1,∞) =∩
m∈Z+

γm(B, f1,∞), there exists m2 ∈ Z+ such that x /∈ γm2(B, f1,∞). Fur-

thermore, there exists a neighborhood V of x such that for every y ∈ V , y /∈
γm2(B, f1,∞). Take m = max{m1,m2}. We have γm(A, f1,∞) ⊆ γm1(A, f1,∞)
and γm(B, f1,∞) ⊆ γm2(B, f1,∞). Hence, U ∩ γm(A, f1,∞) = ∅ and V ∩
γm(B, f1,∞) = ∅. Since U ∩ V is a neighborhood of x and γm(A, f1,∞) ∪
γm(B, f1,∞) = γm(A∪B, f1,∞), it follows that (U ∩V )∩ γm(A∪B, f1,∞) = ∅.
This is a contradiction because x ∈ ω(A ∪B, f1,∞). □

We give an example to show that the inclusion in (2) of Proposition 3.1 can
be strict.

Example 3.1. Let X = [0, 1] and fn : [0, 1] → [0, 1], fn(x) = e−nx for every
n ∈ N and x ∈ [0, 1]. Let A = [0, 1

3 ] and B = [ 12 , 1]. Then ω(A ∩ B, f1,∞) ⫋
ω(A, f1,∞) ∩ ω(B, f1,∞).

Since A∩B = [0, 1
3 ]∩ [ 12 , 1] = ∅, then ω(A∩B, f1,∞) = ∅. For x ∈ [0, 1] and

n ∈ N, we have fn
1 (x) = e−

n(n+1)
2 x. Hence, ω(A, f1,∞) = {0} and ω(B, f1,∞) =

{0}. Furthermore, we have ω(A, f1,∞) ∩ ω(B, f1,∞) = {0}. Therefore, ω(A ∩
B, f1,∞) ⫋ ω(A, f1,∞) ∩ ω(B, f1,∞).

Definition 3.1. Let (X, f1,∞) be a non-autonomous discrete system and A and
B be two subsets of X. A f1,∞-attracts B if for every open set U containing A
there exists m ∈ Z+ such that γm(B, f1,∞) ⊆ U . When the reference to f1,∞
is evident, we will omit this dependence.

(X, f1,∞) is said to have attraction if there exist two subsets A and B of X
such that A attracts B.

It is clear that A attracts B if and only if for every open set U containing
A there exists m ∈ Z+ such that for every n ≥ m it is true fn

1 (B) ⊆ U .

Example 3.2. Let X = [0, 1] and fn : [0, 1] → [0, 1], fn(x) = e−nx for every
n ∈ N and x ∈ [0, 1]. Then (X, f1,∞) has attraction.

Take A = [0, 1
2 ] and B = [0, 1

4 ]. Let U be any open set of X with A ⊆ U .
We will show that A attracts B. Since for every n ∈ Z+, we have fn(B) ⊆ B.
Hence, fn

1 (B) ⊆ B for every n ∈ N. Moreover, B ⊆ A. Furthermore, we have
fn
1 (B) ⊆ A for every n ∈ Z+. This means that fn

1 (B) ⊆ U for every n ∈ Z+.
Hence, γn(B, f1,∞) ⊆ U for every n ∈ Z+. This shows A attracts B. Therefore,
(X, f1,∞) has attraction.

Definition 3.2 ([23]). Let (X, f1,∞) and (Y, g1,∞) be two non-autonomous
discrete systems and let h : X → Y be a continuous map and

gn(h(x)) = h(fn(x)) for all n ∈ N and x ∈ X.



708 LEI LIU AND BIN CHEN

(1) If h : X → Y is a surjective map, then f1,∞ and g1,∞ are said to be
topologically semi-conjugate.

(2) If h : X → Y is a homeomorphism, then f1,∞ and g1,∞ are said to be
topologically conjugate.

Example 3.3. Let fn : R → R with fn(x) = nx for all n ∈ N and x ∈ R, where
R is a real line, and gn : S1 → S1 with gn(e

iθ) = einθ for all n ∈ N, where S1

is the unite circle. Define h : R → S1 by h(x) = e2πix. It can be easily verified
that h is a continuous surjective map and h ◦ fn = gn ◦ h. Therefore, (R, f1,∞)
and (S1, g1,∞) are topologically semi-conjugate.

Theorem 3.1. Let (X, f1,∞) and (Y, g1,∞) be two non-autonomous discrete
systems and let h : X → Y be a semi-conjugate map. If (X, f1,∞) has attrac-
tion, then (Y, g1,∞) has attraction.

Proof. Since (X, f1,∞) has attraction, then there exist two sets A and B in X
such that A f1,∞-attracts B. Moreover, h : X → Y is a continuous map, thus
h(A), h(B) ∈ Y . We will prove that h(A) g1,∞-attracts h(B).

Let U be an open set of Y such that h(A) ⊆ U . Then h−1(U) is an open set
of X and A ⊆ h−1(U). Since A f1,∞-attracts B, there exists m ∈ Z+ such that
γm(B, f1,∞) ⊆ h−1(U). Furthermore, we have h(γm(B, f1,∞)) ⊆ h(h−1(U)).
Moreover, h is a semi-conjugate map, i.e., h is a surjective map and gk(h(x)) =
h(fk(x)) for every k ∈ N and x ∈ X. Furthermore,

h(γm(B, f1,∞)) = h(
∪
x∈B

{fn
1 (x) : n ≥ m}) =

∪
x∈B

{h(fn
1 (x)) : n ≥ m}

=
∪
x∈B

{gn1 (h(x)) : n ≥ m} =
∪

x∈h(B)

{gn1 (x) : n ≥ m}.

Hence, h(γm(B, f1,∞)) = γm(h(B), g1,∞). Furthermore, we have

γm(h(B), g1,∞) ⊆ U.

This shows h(A) g1,∞-attracts h(B). Therefore, (Y, g1,∞) has attraction. □
Corollary 3.1. Let (X, f1,∞) and (Y, g1,∞) be topologically conjugate. Then
(X, f1,∞) has attraction if and only if (Y, g1,∞) has attraction.

Theorem 3.2. Let (X, f1,∞) be a k-periodic discrete system and (X, g) be its
induced autonomous discrete system, where g = fk ◦fk−1 ◦ · · · ◦f1. If (X, f1,∞)
has attraction, then (X, g) has attraction.

Proof. Since (X, f1,∞) has attraction, there exist two sets A and B in X such
that A f1,∞-attracts B. Furthermore, for every open set U of X containing A,
there exists m ∈ Z+ such that γm(B, f1,∞) ⊆ U . We will prove A g-attracts
B.

As (X, f1,∞) is a k-periodic discrete system and g = fk ◦ fk−1 ◦ · · · ◦ f1 =
fk
1 , we have fn+k(x) = fn(x) for every x ∈ X. Furthermore, gm(x) =
(fk

1 )
m(x) = fmk

1 (x). Moreover, for every x ∈ X, {gn(x) : n ≥ m} =
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{gm(x), gm+1(x), . . .} = {fmk
1 (x), f

(m+1)k
1 (x), . . .}, thus, {gn(x) : n ≥ m} ⊆

{fn
1 (x) : n ≥ m}. Hence,

∪
x∈B{gn(x) : n ≥ m} ⊆

∪
x∈B{fn

1 (x) : n ≥ m}, i.e.,
γm(B, g) ⊆ γm(B, f1,∞). Furthermore, we have γm(B, g) ⊆ U . This shows A
g-attracts B. Therefore, (X, g) has attraction. □

4. Main results

Theorem 4.1. Let (X, f1,∞) be a non-autonomous discrete system, where X
is a regular topological space. Let K be a compact set of X and B ⊆ X. Then
K f1,∞-attracts B if and only if for every closed neighborhood V of K, there
exists m ∈ Z+ such that γm(B, f1,∞) ⊆ V .

Proof. Necessity. Let V be a closed neighborhood of K, then K ⊆ int(V ),
where int(V ) denotes the interior of V . Since K f1,∞-attracts B and int(V ) is
an open set containingK, there existsm ∈ Z+ such that γm(B, f1,∞) ⊆ int(V ).
Furthermore, we have γm(B, f1,∞) ⊆ V .

Sufficiency. Let U be any open set containing K. Since X is a regular
topological space and U is an open neighborhood of K, then by Corollary 2.1
there exists a closed set V ofX such that V ⊆ U and V is a closed neighborhood
of K. Furthermore, we have K ⊆ int(V ). Hence, there exists m ∈ Z+ such
that γm(B, f1,∞) ⊆ V , implying γm(B, f1,∞) ⊆ U . This shows K attracts
B. □
Proposition 4.1. Let (X, f1,∞) be a non-autonomous discrete system and let
A,B, F,K ⊆ X and K be a compact set. Then the following properties hold:

(1) if A ⊆ B and F attracts B, then F attracts also A;
(2) if F attracts A and B, then F attracts A ∩B;
(3) if F attracts A and B, then F attracts A ∪B;
(4) if X is a regular space and K attracts A, then K attracts also A.

Proof. (1) Since F attracts B, then for every open set U containing F there
exists m ∈ Z+ such that γm(B, f1,∞) ⊆ U . As A ⊆ B, we have γm(A, f1,∞) ⊆
γm(B, f1,∞), which implies γm(A, f1,∞) ⊆ U . Hence, F attracts A.

(2) Since A ∩ B ⊆ A, A ∩ B ⊆ B and F attracts A and B, then by (1), F
attracts A ∩B.

(3) Let U be any open neighborhood of F . Since F attracts A and B,
there exist m1,m2 ∈ Z+ such that γm1(A, f1,∞) ⊆ U and γm2(B, f1,∞) ⊆
U . Take m = max{m1,m2}. Thus, γm(A, f1,∞) ⊆ γm1(A, f1,∞) ⊆ U and
γm(B, f1,∞) ⊆ γm2(B, f1,∞) ⊆ U . Since γm(A ∪ B, f1,∞) = γm(A, f1,∞) ∪
γm(B, f1,∞), it follows that γm(A ∪B, f1,∞) ⊆ U . Hence, F attracts A ∪B.

(4) Let V be a closed neighborhood of F . Since A is attracted by K, there
exists m̄ ∈ Z+ such that for any m ≥ m̄ we have fm

1 (A) ⊆ V . Let m ≥ m̄, we
have A ⊆ (fm

1 )−1(V ) and (fm
1 )−1(V ) is closed because it is the inverse image

of a closed set through a continuous mapping. Hence, A ⊆ (fm
1 )−1(V ), which

implies fm
1 (A) ⊆ V . Furthermore, we have γm̄(A, f1,∞) ⊆ V . Therefore, if X

is a regular space, then by Theorem 4.1, K attracts A. □
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Lemma 4.1. Let (X, f1,∞) be a non-autonomous discrete system and let E ⊆
X and K be a compact set of X such that K attracts E. Then for every open
cover of K there exists m ∈ Z+ such that γm(E, f1,∞)∪K has a finite subcover.

Proof. Let U be an open cover of K. Since K is compact, it admits a finite sub-
cover. Let {V1, V2, . . . , Vn} be such subcover, i.e., Vi ∈ U and K ⊆

∪n
i=1 Vi. Let

U =
∪n

i=1 Vi. Since U is an open neighborhood of K and K attracts E, there
exists m ∈ Z+ such that γm(E, f1,∞) ⊆ U =

∪n
i=1 Vi. Hence, {V1, V2, . . . , Vn}

is also a finite subcover of γm(E, f1,∞), which implies {V1, V2, . . . , Vn} is a finite
subcover of γm(E, f1,∞) ∪K. □

The next theorem contains the main properties of the ω-limit sets of non-
autonomous discrete systems in regular spaces.

Theorem 4.2. Let (X, f1,∞) be a non-autonomous discrete system, where X
is a regular topological space. Let E ⊆ X and K be a compact set of X such
that K attracts E. Then the following properties hold:

(1) ω(E, f1,∞) is a nonempty compact set;
(2) if F ⊆ X is a closed set, then F attracts E if and only if ω(E, f1,∞) ⊆

F ;
(3) ω(E, f1,∞) attracts E.

Proof. (1) We first show that ω(E, f1,∞) is a nonempty compact set. To simply
the proof we divide it in some steps.

Step 1. Let {xn} ⊆ E be a sequence and {n} be a positively divergent
sequence. Then we have that {fn

1 (xn) : n ∈ Z+} ∪K is a compact set. In fact,
let U be an open cover of {fn

1 (xn) : n ∈ Z+}∪K. Since K is a compact set and
K attracts E, by Lemma 4.1, for every open cover U ofK there existm ∈ N and
a finite subcover V ⊆ U such that γm(E, f1,∞) ∪K ⊆

∪
V ∈V V . Clearly, since

n → ∞, there exists n ≥ m such that (xn, n) ∈ E× [m,+∞). Therefore, V is a
finite subcover of {fn

1 (xn) : n ≥ m}∪K, i.e., {fn
1 (xn) : n ≥ m}∪K ⊆

∪
V ∈V V .

Since U is also an open cover of {fn
1 (xn) : n ∈ Z+}, there exists a finite

subcover W of {fn
1 (xn) : 0 ≤ n ≤ m}. Further, V ∪ W is a finite subcover

{fn
1 (xn) : n ∈ Z+} ∪K. Hence, {fn

1 (xn) : n ∈ Z+} ∪K is compact.

Step 2. We will show that
∩

n∈Z+
{fq

1 (xq) : q ≥ n} ⊆ ω(E, f1,∞).

Define the closed sets Cm = {fq
1 (xq) : q ≥ m} for each m ∈ Z+. Since

X is a regular topological space and {fn
1 (xn) : n ∈ Z+} ∪ K is compact by

Step 1, we have {fn
1 (xn) : n ∈ Z+} ∪ K is a closed set of X. Furthermore,

Cm ⊆ {fn
1 (xn) : n ∈ Z+} ∪K for each m ∈ Z+. Hence, Cm are compact sets

for all m ∈ N. Since {Cm} is a decreasing sequence and Cm are compact sets
for all m ∈ N, so by the finite intersection property, we have

∩
m∈Z+

Cm ̸= ∅.
Let x ∈

∩
m∈Z+

Cm. Since q → ∞, so for every m ∈ N there exists q ∈
Z+ such that q ≥ m. Since {xq} is a sequence in E, we have

∩
n∈Z+

Cn ⊆
{fq

1 (xq) : q ≥ m} ⊆ γm(E, f1,∞), implying x ∈ γm(E, f1,∞). As m ∈ Z+ is
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arbitrary, which implies x ∈
∩

m∈Z+
γm(E, f1,∞) = ω(E, f1,∞). Furthermore,

we have
∩

n∈Z+
{fq

1 (xq) : q ≥ n} ⊆ ω(E, f1,∞). Therefore, ω(E, f1,∞) ̸= ∅.
Step 3. We will prove that ω(E, f1,∞) ⊆ K, which implies ω(E, f1,∞) is

compact.
We suppose by contradiction that ω(E, f1,∞) ⊈ K, thus there exists x ∈

ω(E, f1,∞) and x /∈ K. Since X is a Hausdorff space, there exist an open
neighborhood U of x and an open set V containing K such that U ∩ V = ∅.
Moreover, K attracts E, there exists m ∈ Z+ such that γm(E, f1,∞) ⊆ V .

Furthermore, we have U ∩ γm(E, f1,∞) = ∅. Hence, x /∈ γm(E, f1,∞). As

x ∈ ω(E, f1,∞), then x ∈ γn(E, f1,∞) for every n ∈ Z+. In particular, we take

n = m, implying x ∈ γm(E, f1,∞). This is a contradiction. Hence, we have
ω(E, f1,∞) ⊆ K. Since K is compact and ω(E, f1,∞) is closed, it follows that
ω(E, f1,∞) is a compact set of X.

(2) We show that, if F ⊆ X is closed and F attracts E, then ω(E, f1,∞) ⊆ F .
We suppose by contradiction that ω(E, f1,∞) ⊈ F , i.e., there exists x ∈

ω(E, f1,∞) and x /∈ F . By the regularity property of X, there exist an open
set U containing F and an open set V of x such that U ∩ V = ∅. Since F
attracts E, there exists m ∈ Z+ such that γm(E, f1,∞) ⊆ U , which implies

γm(E, f1,∞) ∩ V = ∅. Hence, x /∈ γm(E, f1,∞). As x ∈ ω(E, f1,∞), we have

x ∈ γm(E, f1,∞). This is a contradiction. Therefore, ω(E, f1,∞) ⊆ F .
Conversely, we prove that, if ω(E, f1,∞) ⊆ F , then F attracts E.
We suppose by contradiction that there exists an open set U containing

F such that for every n ∈ Z+, γn(E, f1,∞) ⊈ U . Hence, for every n ∈ Z+

there exist qn ≥ n and xqn ∈ E such that fqn
1 (xqn) /∈ U , we have fqn

1 (xqn) ∈
X \ U , where X \ U is a closed set of X. Therefore, {fqm

1 (xqm) : m ≥ n} ⊆
X \ U = X \ U . Furthermore,

∩
n∈Z+

{fqm
1 (xqm) : m ≥ n} ⊆ X \ U , by the

finite intersection property, we have∩
n∈Z+

{fqm
1 (xqm) : m ≥ n} ̸= ∅.

From above Step 2 of (1), we have
∩

n∈Z+
{fm

1 (xm) : m ≥ n} ⊆ ω(E, f1,∞),

which implies
∩

n∈Z+
{fqm

1 (xqm) : m ≥ n} ⊆ ω(E, f1,∞). Since for every y ∈∩
n∈Z+

{fqm
1 (xqm) : m ≥ n}, we have y /∈ U , implying y /∈ F . As y ∈ ω(E, f1,∞)

and ω(E, f1,∞) ⊆ F , we have y ∈ F . This is a contradiction. Therefore, F
attracts E.

(3) By the result of (1), ω(E, f1,∞) is a nonempty closed set of X. Since
ω(E, f1,∞) ⊆ ω(E, f1,∞), then by the result of (2), ω(E, f1,∞) attracts E. □

Corollary 4.1. Let (X, f1,∞) be a non-autonomous discrete system, where

X is a regular space. If B is a nonempty subset of X such that γ(B, f1,∞)
is a compact set, then ω(B, f1,∞) is a nonempty compact set and ω(B, f1,∞)
attracts B.
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Proof. Since γ(B, f1,∞) =
∪

x∈B{fn
1 (x) : n ∈ Z+}, then for every m ∈ Z+,

we have fm
1 (B) ⊆ γ(B, f1,∞). Furthermore, for any open neighborhood U of

γ(B, f1,∞), we have fm
1 (B) ⊆ γ(B, f1,∞) ⊆ U . Hence, γ(B, f1,∞) attracts

B. By (1) of Theorem 4.2, we have ω(B, f1,∞) is a nonempty compact set.
Therefore, by (3) of Theorem 4.2, ω(B, f1,∞) attracts B. □
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