• Title/Summary/Keyword: Fundamental frequency switching

Search Result 61, Processing Time 0.029 seconds

Model Predictive Control for Shunt Active Power Filter in Synchronous Reference Frame

  • Al-Othman, A.K.;AlSharidah, M.E.;Ahmed, Nabil A.;Alajmi, Bader. N.
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.405-415
    • /
    • 2016
  • This paper presents a model predictive control for shunt active power filters in synchronous reference frame using space vector pulse-width modulation (SVPWM). The three phase load currents are transformed into synchronous rotating reference frame in order to reduce the order of the control system. The proposed current controller calculates reference current command for harmonic current components in synchronous frame. The fundamental load current components are transformed into dc components revealing only the harmonics. The predictive current controller will add robustness and fast compensation to generate commands to the SVPWM which minimizes switching frequency while maintaining fast harmonic compensation. By using the model predictive control, the optimal switching state to be applied to the next sampling time is selected. The filter current contains only the harmonic components, which are the reference compensating currents. In this method the supply current will be equal to the fundamental component of load current and a part of the current at fundamental frequency for losses of the inverter. Mathematical analysis and the feasibility of the suggested approach are verified through simulation results under steady state and transient conditions for non-linear load. The effectiveness of the proposed controller is confirmed through experimental validation.

Implementation of Cuckoo Search Optimized Firing Scheme in 5-Level Cascaded H-Bridge Multilevel Inverter for Power Quality Improvement

  • Singla, Deepshikha;Sharma, P.R.
    • Journal of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.1458-1466
    • /
    • 2019
  • Multilevel inverters have appeared as a successful and utilitarian solution in many power applications. The prime objective of an inverter is to keep the fundamental component of the output voltage of a multilevel inverter at a preferred value. Equally important is the need to keep the harmonic components in the output voltage within stated harmonic limits. Therefore, the basis of this research is to develop a harmonic minimization function that optimizes the switching angles of cascaded H-bridge multilevel inverter. Due to benefits of the Cuckoo Search (CS) algorithm, it is applied to determine the switching angles, which are further used to generate the switching pattern for firing the H-bridges of multilevel inverter. Simulation results are compared with SPWM based firing scheme. The switching frequency for SPWM firing scheme is taken as 200 Hz since the switching losses are increased when switching frequency is high. To validate the ability of Cuckoo Search optimized firing scheme in minimization of harmonics, experimental results obtained from hardware prototype of Five Level Cascaded H-Bridge Multilevel Inverter equipped with a FPGA controller are presented to verify the simulation results.

A Novel Modulation Techniques for Driving a Variable-Speed Induction Motor (가변속 유도 전동기를 구동하기 위한 PWM인버터의 새로운 변조 방식)

  • Yoon, Byung-Do;Jeon, Hi-Jong;Kim, Kuk-Jin;Jeong, Eull-Gi;Son, Jin-Geun
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.600-604
    • /
    • 1991
  • In this paper, an advanced PWM modulation strategy for driving a variable-speed induction motor is introduced. According to this method, the technique of efficiently eliminating harmonics component is achived. A switching pattern was computed making use of the near-proportionality of voltage and frequency in AC machines operating with constant flux. At low magnitudes and low frequencies of the foundamental, many more harmonics are eliminated than at high magnitudes and frequencies. In order to keep the inverter switching frequency constant over the output frequency range, chopping times diminishes as the frequency of the fundamental increases.

  • PDF

Cascade 3-Phase IHCML Inverter using maximal distension vector control (최근접 벡터 제어기법을 이용한 Cascade 3상 IHCML 인버터)

  • Song, Sung-Geun;Park, Sung-Jun;Nam, Hae-Kon
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.187-189
    • /
    • 2007
  • In this paper, the cascade 3-phase IHMCL inverter using two low frequency transformers is proposed. The proposed inverter is constructed by connecting a 3-phase IHCML inverter. the cascade 3-phase IHCML inverter has several advantages. One advantage is that only one input power source is required because of using transformers to isolate. Another advantage is that the switching frequency of the high power switches is almost fundamental frequency of reference and the other the switching frequency of the low power switches is higher. It can be known that cascade 3 phase IHCML inverter has the excellent efficiency and the outstanding electric quality. lastly, we tested the 5kW cascade 3-phase IHCML inverter to clarify the proposed electric circuit and reasonableness of control signal for the proposed inverter.

  • PDF

Design Consideration of Half-Bridge LLC Resonant Converter

  • Choi, Hang-Seok
    • Journal of Power Electronics
    • /
    • v.7 no.1
    • /
    • pp.13-20
    • /
    • 2007
  • LLC resonant converters display many advantages over the conventional LC series resonant converter such as narrow frequency variation over wide range of load and input variation and zero voltage switching even under no load conditions. This paper presents analysis and design consideration for the half bridge LLC resonant converter. Using the fundamental approximation, the gain equation is obtained, where the leakage inductance in the transformer secondary side is also considered. Based on the gain equation, the practical design procedure is investigated to optimize the resonant network for a given input/output specifications. The design procedure is verified through an experimental prototype of the 115W half-bridge LLC resonant converter.

A Simple Capacitor Voltage Balancing Method with a Fundamental Sorting Frequency for Modular Multilevel Converters

  • Peng, Hao;Wang, Ying;Wang, Kun;Deng, Yan;He, Xiangning;Zhao, Rongxiang
    • Journal of Power Electronics
    • /
    • v.14 no.6
    • /
    • pp.1109-1118
    • /
    • 2014
  • A Fundamental Frequency Sorting Algorithm (FFSA) is proposed in this paper to balance the voltages of floating dc capacitors for Modular Multilevel Converters (MMCs). The main idea is to change the sequences of the CPS-PWM carriers according to the capacitor voltage increments during the previous fundamental period. Excessive frequent sorting is avoided and many calculating resources are saved for the controller. As a result, more sub-modules can be dealt with. Furthermore, it does not need to measure the arm currents. Therefore, the communication between the controllers can be simplified and the number of current sensors can be reduced. Moreover, the proposed balancing method guarantees that all of the switching frequencies of the sub-modules are equal to each other. This is quite beneficial for the thermal design of the sub-modules and the lifetime of the power switches. Simulation and experimental results acquired from a 9-level prototype verify the viability of the proposed balancing method.

A Study on Staircase PWN Inverter Using Power MOS FET (POWER MOS FET를 사용한 계단파 PWN 인버터에 관한 연구)

  • 이성백;구용회;이종규
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.1 no.2
    • /
    • pp.70-73
    • /
    • 1987
  • This paper itltroduces a simple stair-case PWM using the pseudo-sinusoidal method. In a configuration of controller, the value of sine as a fundamental factor divided into stair-case level and the three-phase PWM inverter is composed by digital compound for each value of stair-case level. The three-phase output pulse at a fixed carrier frequency and a variable reference frequency is obtained under the effect of reduced harmonics. In this experiment, using the power FET as the switching device, 0.5 H.P. induction motor operation is performed when the switching frequency is 20KHz.

  • PDF

Multi-level Inverter Using 3-Phase isolated Transformers (3상 절연형 변압기를 이용한 다중레벨)

  • Lee, Hwa-Chun;Song, Sung-Gun;Park, Sung-Jun;Kim, Kwang-Heon
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1134-1135
    • /
    • 2007
  • In this paper, we proposed the isolated multi-level inverter using 3-phase transformers. It makes possible to use a single DC power source due to employing low frequency transformers. In this inverter, the number of transformer could be reduced comparing with an exiting 3-phase multi-level inverter using single phase transformer. Also, using phase angle control method with switching frequency equal to output fundamental frequency, harmonics component of output voltage and switching losses can be reduced. Finally, we made a prototype inverter to clarify the proposed electric circuit and reasonableness of control signal.

  • PDF

Modeling of 18-Pulse STATCOM for Power System Applications

  • Singh, Bhim;Saha, R.
    • Journal of Power Electronics
    • /
    • v.7 no.2
    • /
    • pp.146-158
    • /
    • 2007
  • A multi-pulse GTO based voltage source converter (VSC) topology together with a fundamental frequency switching mode of gate control is a mature technology being widely used in static synchronous compensators (STATCOMs). The present practice in utility/industry is to employ a high number of pulses in the STATCOM, preferably a 48-pulse along with matching components of magnetics for dynamic reactive power compensation, voltage regulation, etc. in electrical networks. With an increase in the pulse order, need of power electronic devices and inter-facing magnetic apparatus increases multi-fold to achieve a desired operating performance. In this paper, a competitive topology with a fewer number of devices and reduced magnetics is evolved to develop an 18-pulse, 2-level $\pm$ 100MVAR STATCOM in which a GTO-VSC device is operated at fundamental frequency switching gate control. The inter-facing magnetics topology is conceptualized in two stages and with this harmonics distortion in the network is minimized to permissible IEEE-519 standard limits. This compensator is modeled, designed and simulated by a SimPowerSystems tool box in MATLAB platform and is tested for voltage regulation and power factor correction in power systems. The operating characteristics corresponding to steady state and dynamic operating conditions show an acceptable performance.

New Zero-Voltage-Switching PWM Inverter (새로운 제로 전압 스위칭 PWM 인버터)

  • 곽동걸;이현우;서기영;권순걸;우정인
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1992.11a
    • /
    • pp.47-50
    • /
    • 1992
  • In this paper, the authors propose a so-called new zero voltage switching circuit topology arts an improved PWM strategy. In order to minimize voltage stress in dc-ac high switching frequency power conversion, the proposal circuit is used as interface between DC sully and the PWM inverter. The new ZVS circuit provide PWM inverter with a short zero voltage period in the dc 1ink just before inverter switches operate. By using the proposed modulating signal (transformational sinewave) art carrier sinal (sawtooth ware), the amplitude of the fundamental component is increased about 15 percent more than that of a conventional sinusoidal modulating signal and triangular carrier signal, the switching tosses is reduced. Some simulative results on computer are included to confirm the validity of the analytical results.

  • PDF