• 제목/요약/키워드: Functional molecules

검색결과 678건 처리시간 0.033초

Identification of Critical Residues for Plasminogen Binding by the αX I-domain of the β2 integrin, αXβ2

  • Gang, Jongyun;Choi, Jeongsuk;Lee, Joo Hee;Nham, Sang-Uk
    • Molecules and Cells
    • /
    • 제24권2호
    • /
    • pp.240-246
    • /
    • 2007
  • The ${\beta}2$ integrins on leukocytes play important roles in cell adhesion, migration and phagocytosis. One of the ${\beta}2$ integrins, ${\alpha}X{\beta}2$ (CD11c/CD18), is known to bind ligands such as fibrinogen, Thy-1 and iC3b, but its function is not well characterized. To understand its biological roles, we attempted to identify novel ligands. The functional moiety of ${\alpha}X{\beta}2$, the ${\alpha}X$ I-domain, was found to bind plasminogen, the zymogen of plasmin, with moderate affinity ($1.92{\times}10^{-6}M$) in the presence of $Mg^{2+}$ or $Mn^{2+}$. The ${\beta}D-{\alpha}5$ loop of the ${\alpha}X$ I-domain proved to be responsible for binding, and lysine residues ($Lys^{242}$, $Lys^{243}$) in the loop were the most important for recognizing plasminogen. An excess amount of the lysine analog, 6-aminohexanoic acid, inhibited ${\alpha}X$ I-domain binding to plasminogen, indicating that binding is lysine-dependent. The results of this study indicate that leukocytes regulate plasminogen activation, and consequently plasmin activities, through an interaction with ${\alpha}X{\beta}2$ integrin.

Structural Analysis of the Streptomyces avermitilis CYP107W1-Oligomycin A Complex and Role of the Tryptophan 178 Residue

  • Han, Songhee;Pham, Tan-Viet;Kim, Joo-Hwan;Lim, Young-Ran;Park, Hyoung-Goo;Cha, Gun-Su;Yun, Chul-Ho;Chun, Young-Jin;Kang, Lin-Woo;Kim, Donghak
    • Molecules and Cells
    • /
    • 제39권3호
    • /
    • pp.211-216
    • /
    • 2016
  • CYP107W1 from Streptomyces avermitilis is a cytochrome P450 enzyme involved in the biosynthesis of macrolide oligomycin A. A previous study reported that CYP107W1 regioselectively hydroxylated C12 of oligomycin C to produce oligomycin A, and the crystal structure of ligand free CYP107W1 was determined. Here, we analyzed the structural properties of the CYP107W1-oligomycin A complex and characterized the functional role of the Trp178 residue in CYP107W1. The crystal structure of the CYP107W1 complex with oligomycin A was determined at a resolution of $2.6{\AA}$. Oligomycin A is bound in the substrate access channel on the upper side of the prosthetic heme mainly by hydrophobic interactions. In particular, the Trp178 residue in the active site intercalates into the large macrolide ring, thereby guiding the substrate into the correct binding orientation for a productive P450 reaction. A Trp178 to Gly mutation resulted in the distortion of binding titration spectra with oligomycin A, whereas binding spectra with azoles were not affected. The Gly178 mutant's catalytic turnover number for the 12-hydroxylation reaction of oligomycin C was highly reduced. These results indicate that Trp178, located in the open pocket of the active site, may be a critical residue for the productive binding conformation of large macrolide substrates.

Copper Ion from Cu2O Crystal Induces AMPK-Mediated Autophagy via Superoxide in Endothelial Cells

  • Seo, Youngsik;Cho, Young-Sik;Huh, Young-Duk;Park, Heonyong
    • Molecules and Cells
    • /
    • 제39권3호
    • /
    • pp.195-203
    • /
    • 2016
  • Copper is an essential element required for a variety of functions exerted by cuproproteins. An alteration of the copper level is associated with multiple pathological conditions including chronic ischemia, atherosclerosis and cancers. Therefore, copper homeostasis, maintained by a combination of two copper ions ($Cu^+$ and $Cu^{2+}$), is critical for health. However, less is known about which of the two copper ions is more toxic or functional in endothelial cells. Cubic-shaped $Cu_2O$ and CuO crystals were prepared to test the role of the two different ions, $Cu^+$ and $Cu^{2+}$, respectively. The $Cu_2O$ crystal was found to have an effect on cell death in endothelial cells whereas CuO had no effect. The $Cu_2O$ crystals appeared to induce p62 degradation, LC3 processing and an elevation of LC3 puncta, important processes for autophagy, but had no effect on apoptosis and necrosis. $Cu_2O$ crystals promote endothelial cell death via autophagy, elevate the level of reactive oxygen species such as superoxide and nitric oxide, and subsequently activate AMP-activated protein kinase (AMPK) through superoxide rather than nitric oxide. Consistently, the AMPK inhibitor Compound C was found to inhibit $Cu_2O$-induced AMPK activation, p62 degradation, and LC3 processing. This study provides insight on the pathophysiologic function of $Cu^+$ ions in the vascular system, where $Cu^+$ induces autophagy while $Cu^{2+}$ has no detected effect.

Propyl Gallate Inhibits Adipogenesis by Stimulating Extracellular Signal-Related Kinases in Human Adipose Tissue-Derived Mesenchymal Stem Cells

  • Lee, Jeung-Eun;Kim, Jung-Min;Jang, Hyun-Jun;Lim, Se-Young;Choi, Seon-Jeong;Lee, Nan-Hee;Suh, Pann-Ghill;Choi, Ung-Kyu
    • Molecules and Cells
    • /
    • 제38권4호
    • /
    • pp.336-342
    • /
    • 2015
  • Propyl gallate (PG) used as an additive in various foods has antioxidant and anti-inflammatory effects. Although the functional roles of PG in various cell types are well characterized, it is unknown whether PG has effect on stem cell differentiation. In this study, we demonstrated that PG could inhibit adipogenic differentiation in human adipose tissue-derived mesenchymal stem cells (hAMSCs) by decreasing the accumulation of intracellular lipid droplets. In addition, PG significantly reduced the expression of adipocyte-specific markers including peroxisome proliferator-activated receptor-${\gamma}$ (PPAR-${\gamma}$), CCAAT enhancer binding protein-${\alpha}$ (C/EBP-${\alpha}$), lipoprotein lipase (LPL), and adipocyte fatty acid-binding protein 2 (aP2). PG inhibited adipogenesis in hAMSCs through extracellular regulated kinase (ERK) pathway. Decreased adipogenesis following PG treatment was recovered in response to ERK blocking. Taken together, these results suggest a novel effect of PG on adipocyte differentiation in hAMSCs, supporting a negative role of ERK1/2 pathway in adipogenic differentiation.

TrkB Promotes Breast Cancer Metastasis via Suppression of Runx3 and Keap1 Expression

  • Kim, Min Soo;Lee, Won Sung;Jin, Wook
    • Molecules and Cells
    • /
    • 제39권3호
    • /
    • pp.258-265
    • /
    • 2016
  • In metastatic breast cancer, the acquisition of malignant traits has been associated with the increased rate of cell growth and division, mobility, resistance to chemotherapy, and invasiveness. While screening for the key regulators of cancer metastasis, we observed that neurotrophin receptor TrkB is frequently overexpressed in breast cancer patients and breast cancer cell lines. Additionally, we demonstrate that TrkB expression and clinical breast tumor pathological phenotypes show significant correlation. Moreover, TrkB expression was significantly upregulated in basal-like, claudin-low, and metaplastic breast cancers from a published microarray database and in patients with triple-negative breast cancer, which is associated with a higher risk of invasive recurrence. Interestingly, we identified a new TrkB-regulated functional network that is important for the tumorigenicity and metastasis of breast cancer. We demonstrated that TrkB plays a key role in regulation of the tumor suppressors Runx3 and Keap1. A markedly increased expression of Runx3 and Keap1 was observed upon knockdown of TrkB, treatment with a TrkB inhibitor, and in TrkB kinase dead mutants. Additionally, the inhibition of PI3K/AKT activation significantly induced Runx3 and Keap1 expression. Furthermore, we showed that TrkB enhances metastatic potential and induces proliferation. These observations suggest that TrkB plays a key role in tumorigenicity and metastasis of breast cancer cells through suppression of Runx3 or Keap1 and that it is a promising target for future intervention strategies for preventing tumor metastasis and cancer chemoprevention.

Expression and Preliminary Functional Profiling of the let-7 Family during Porcine Ovary Follicle Atresia

  • Cao, Rui;Wu, Wang Jun;Zhou, Xiao Long;Xiao, Peng;Wang, Yi;Liu, Hong Lin
    • Molecules and Cells
    • /
    • 제38권4호
    • /
    • pp.304-311
    • /
    • 2015
  • Most follicles in the mammalian ovary undergo atresia. Granulosa cell apoptosis is a hallmark of follicle atresia. Our previous study using a microRNA (miRNA) microarray showed that the let-7 microRNA family was differentially expressed during follicular atresia. However, whether the let-7 miRNA family members are related to porcine (Sus scrofa) ovary follicular apoptosis is unclear. In the current study, real-time quantitative polymerase chain reaction showed that the expression levels of let-7 family members in follicles and granulosa cells were similar to our microarray data, in which miRNAs let-7a, let-7b, let-7c, and let-7i were significantly decreased in early atretic and progressively atretic porcine ovary follicles compared with healthy follicles, while let-7g was highly expressed during follicle atresia. Furthermore, flow cytometric analysis and Hoechst33342 staining demonstrated that let-7g increased the apoptotic rate of cultured granulosa cells. In addition, let-7 target genes were predicted and annotated by TargetScan, PicTar, gene ontology and Kyoto encyclopedia of genes and genomes pathways. Our data provide new insight into the association between the let-7 miRNA family in granulosa cell programmed death.

OPTHiS Identifies the Molecular Basis of the Direct Interaction between CSL and SMRT Corepressor

  • Kim, Gwang Sik;Park, Hee-Sae;Lee, Young Chul
    • Molecules and Cells
    • /
    • 제41권9호
    • /
    • pp.842-852
    • /
    • 2018
  • Notch signaling is an evolutionarily conserved pathway and involves in the regulation of various cellular and developmental processes. Ligand binding releases the intracellular domain of Notch receptor (NICD), which interacts with DNA-bound CSL [CBF1/Su(H)/Lag-1] to activate transcription of target genes. In the absence of NICD binding, CSL down-regulates target gene expression through the recruitment of various corepressor proteins including SMRT/NCoR (silencing mediator of retinoid and thyroid receptors/nuclear receptor corepressor), SHARP (SMRT/HDAC1-associated repressor protein), and KyoT2. Structural and functional studies revealed the molecular basis of these interactions, in which NICD coactivator and corepressor proteins competitively bind to ${\beta}-trefoil$ domain (BTD) of CSL using a conserved ${\varphi}W{\varphi}P$ motif (${\varphi}$ denotes any hydrophobic residues). To date, there are conflicting ideas regarding the molecular mechanism of SMRT-mediated repression of CSL as to whether CSL-SMRT interaction is direct or indirect (via the bridge factor SHARP). To solve this issue, we mapped the CSL-binding region of SMRT and employed a 'one- plus two-hybrid system' to obtain CSL interaction-defective mutants for this region. We identified the CSL-interaction module of SMRT (CIMS; amino acid 1816-1846) as the molecular determinant of its direct interaction with CSL. Notably, CIMS contains a canonical ${\varphi}W{\varphi}P$ sequence (APIWRP, amino acids 1832-1837) and directly interacts with CSL-BTD in a mode similar to other BTD-binding corepressors. Finally, we showed that CSL-interaction motif, rather than SHARP-interaction motif, of SMRT is involved in transcriptional repression of NICD in a cell-based assay. These results strongly suggest that SMRT participates in CSL-mediated repression via direct binding to CSL.

Anti-inflammatory Effects of Ponciri Fructus Extracts on Raw 264.7 Cells

  • Lee, Jin Wook;Jung, Hyuk-Sang;Sohn, Youngjoo;Kang, Yoon Joong
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2018년도 춘계학술발표회
    • /
    • pp.91-91
    • /
    • 2018
  • Poncirus Fructus (PF) is obtained by drying the trifoliate orange fruit belonging to the Rutaceae family. In our country of medicine, PF has been used as a treatment of indigestion, allergy and inflammation. But Mechanism and medical data for PF is insignificant. Recently, the effect of the study PF of biological activity was reported, such as anti- thrombosis, anti-bacteria, anti-virus, anti- allergic. We investigated that the effect of PF on anti-inflammatory in murine macrophage-like cell line Raw264.7 cells. Our results show that the expression level of Nitric Oxide (NO) and Matrix-metallopeptidase-9 (MMP-9) significantly decreased. Moreover, to determine the expression level of pro-inflammatory cytokines such as Tumor Necrosis Factor ($TNF-{\alpha}$) and Interleukin-6 (IL-6) and the phosphorylation pattern of signaling molecules of mitogen-activated protein kinase (MAPK) family, we performed ELISA and westren blot in Raw264.7 cells. In addition, nuclear factor-kappa B ($NF-{\kappa}B$) pathway was confirmed. PF extract inhibited the production of $TNF-{\alpha}$ and IL-6. The extract suppressed the phosphorylation of ERK1/2, JNK, and p38 MAPK, and the nuclear translocation of $NF-{\kappa}B$ p65 in activated cells. Our results suggest that PF can be used as a potential therapeutic agent or functional food to relieve inflammation.

  • PDF

Interaction of a Pyridyl-Terminated Carbosiloxane Dendrimer with Metal Ions at the Air-Water Interface

  • Lee, Burm-Jong;Kim, Seong-Hoon;Kim, Chung-kyun;Shin, Hoon-Kyu;Kwon, Young-Soo
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • 제3C권6호
    • /
    • pp.216-219
    • /
    • 2003
  • A new class of carbosiloxane dendrimer (G4-48PyP) terminated with 4-pyridylpropano I was synthesized and its possible application to functional thin films was examined through metal complexation and Langmuir-Blodgett (LB) technique. The highly concentrated periphery pyridyl groups of G4-48PyP were exposed on aq. aluminum ions at the air-water interface. The monolayers showed stability up to ca. 50 mN/m of surface pressure. When the subphase became acidic or alkaline, the monolayers changed to condensed phase. The presence of aluminum ions also caused reduction of the molecular area. The macroscopic images of the monolayers were monitored by Brewster angle microscopy (BAM) and only the images of dendrimer aggregates could be observed after the monolayer collapse. The surface images of the monolayer LB film were scanned by atomic force microscopy (AFM). The convex structures of single and aggregate molecules were directly observed. The structures of Langmuir-Blodgett (LB) films were characterized by FT-IR, UV-Vis, and X-ray photoelectron spectroscopy (XPS). The UV-Vis spectrum of the aluminum ion-complexed LB film showed additional band around 670nm, which was not found in the spectra of dendrimer itself or aq. aluminum ions. XPS spectra also supported the incorporation of aluminum ions into the LB films.

NR과 SBR 가황물의 경도와 강성도 대한 온도의 영향 (Effects of temperature on Hardness and Stiffness of NR and SBR Vulcanizates)

  • 진현호;홍창국;조동련;강신영
    • Elastomers and Composites
    • /
    • 제42권3호
    • /
    • pp.143-150
    • /
    • 2007
  • 본 연구에서는 고무제품의 수치 안정성과 성능유지에 직접적으로 영향을 미치는 중요한 특성 중 하나인 온도변화에 따른 고무재료의 경도변화를 고찰하였다. 새롭게 제작된 Inter-national Rubber Hardness Degree(IRHD, Normal type) 경도측정 시험기를 사용하여 미충전된 NR과 SBR 시편의 여러 온도에서 경도변화를 측정하였으며 Young's modulus 값과 비교하였다. NR과 SBR 모두 유리전이온도 근처에서 경도와 Young's modulus의 급격한 변화를 보였다. 온도가 증가함에 따라 경도와 Young's modulus 값이 증가하는 경향을 보였으며 이는 분자의 운동성과 엔트로피 영향으로 해석할 수 있다. 카본블랙과 실리카가 충전된 NR과 SBR의 경우 충전제의 함량이 증가함에 따라 경도에 미치는 온도의 영향이 감소함을 관찰하였다.