Browse > Article
http://dx.doi.org/10.14348/molcells.2016.2310

TrkB Promotes Breast Cancer Metastasis via Suppression of Runx3 and Keap1 Expression  

Kim, Min Soo (Laboratory of Molecular Disease and Cell Regulation, Department of Molecular Medicine, School of Medicine, Gachon University)
Lee, Won Sung (Laboratory of Molecular Disease and Cell Regulation, Department of Molecular Medicine, School of Medicine, Gachon University)
Jin, Wook (Laboratory of Molecular Disease and Cell Regulation, Department of Molecular Medicine, School of Medicine, Gachon University)
Abstract
In metastatic breast cancer, the acquisition of malignant traits has been associated with the increased rate of cell growth and division, mobility, resistance to chemotherapy, and invasiveness. While screening for the key regulators of cancer metastasis, we observed that neurotrophin receptor TrkB is frequently overexpressed in breast cancer patients and breast cancer cell lines. Additionally, we demonstrate that TrkB expression and clinical breast tumor pathological phenotypes show significant correlation. Moreover, TrkB expression was significantly upregulated in basal-like, claudin-low, and metaplastic breast cancers from a published microarray database and in patients with triple-negative breast cancer, which is associated with a higher risk of invasive recurrence. Interestingly, we identified a new TrkB-regulated functional network that is important for the tumorigenicity and metastasis of breast cancer. We demonstrated that TrkB plays a key role in regulation of the tumor suppressors Runx3 and Keap1. A markedly increased expression of Runx3 and Keap1 was observed upon knockdown of TrkB, treatment with a TrkB inhibitor, and in TrkB kinase dead mutants. Additionally, the inhibition of PI3K/AKT activation significantly induced Runx3 and Keap1 expression. Furthermore, we showed that TrkB enhances metastatic potential and induces proliferation. These observations suggest that TrkB plays a key role in tumorigenicity and metastasis of breast cancer cells through suppression of Runx3 or Keap1 and that it is a promising target for future intervention strategies for preventing tumor metastasis and cancer chemoprevention.
Keywords
breast cancer; keap1; metastasis; runx3; TrkB;
Citations & Related Records
연도 인용수 순위
  • Reference
1 van de Vijver, M.J., He, Y.D., van't Veer, L.J., Dai, H., Hart, A.A., Voskuil, D.W., Schreiber, G.J., Peterse, J.L., Roberts, C., Marton, M. J., et al. (2002). A gene-expression signature as a predictor of survival in breast cancer. N Engl. J. Med. 347, 1999-2009.   DOI
2 Yang, J., Mani, S.A., Donaher, J.L., Ramaswamy, S., Itzykson, R.A., Come, C., Savagner, P., Gitelman, I., Richardson, A., and Weinberg, R.A. (2004). Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117, 927-939.   DOI
3 Yilmaz, T., Jiffar, T., de la Garza, G., Lin, H., Milas, Z., Takahashi, Y., Hanna, E., MacIntyre, T., Brown, J.L., Myers, J.N., et al. (2010). Theraputic targeting of Trk supresses tumor proliferation and enhances cisplatin activity in HNSCC. Cancer Biol. Ther. 10, 644-653.   DOI
4 Zhang, S., Guo, D., Luo, W., Zhang, Q., Zhang, Y., Li, C., Lu, Y., Cui, Z., and Qiu, X. (2010). TrkB is highly expressed in NSCLC and mediates BDNF-induced the activation of Pyk2 signaling and the invasion of A549 cells. BMC Cancer 10, 43.   DOI
5 Bardelli, A., Parsons, D.W., Silliman, N., Ptak, J., Szabo, S., Saha, S., Markowitz, S., Willson, J.K., Parmigiani, G., Kinzler, K.W., et al. (2003). Mutational analysis of the tyrosine kinome in colorectal cancers. Science 300, 949.   DOI
6 Cancer Genome Atlas, N. (2012). Comprehensive molecular portraits of human breast tumours. Nature 490, 61-70.   DOI
7 Chao, M.V., and Bothwell, M. (2002). Neurotrophins: to cleave or not to cleave. Neuron 33, 9-12.   DOI
8 Chen, L.F. (2012). Tumor suppressor function of RUNX3 in breast cancer. J. Cell Biochem. 113, 1470-1477.
9 Chi, X.Z., Yang, J.O., Lee, K.Y., Ito, K., Sakakura, C., Li, Q.L., Kim, H.R., Cha, E.J., Lee, Y.H., Kaneda, A., et al. (2005). RUNX3 suppresses gastric epithelial cell growth by inducing p21(WAF1/Cip1) expression in cooperation with transforming growth factor (Bierie and Moses)-activated SMAD. Mol. Cell Biol. 25, 8097-8107.   DOI
10 Dai, B., Yoo, S.Y., Bartholomeusz, G., Graham, R.A., Majidi, M., Yan, S., Meng, J., Ji, L., Coombes, K., Minna, J.D., et al. (2013). KEAP1-dependent synthetic lethality induced by AKT and TXNRD1 inhibitors in lung cancer. Cancer Res. 73, 5532-5543.   DOI
11 DeNicola, G.M., Karreth, F.A., Humpton, T.J., Gopinathan, A., Wei, C., Frese, K., Mangal, D., Yu, K.H., Yeo, C.J., Calhoun, E.S., et al. (2011). Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature 475, 106-109.   DOI
12 Ding, L., Getz, G., Wheeler, D.A., Mardis, E.R., McLellan, M.D., Cibulskis, K., Sougnez, C., Greulich, H., Muzny, D.M., Morgan, M.B., et al. (2008). Somatic mutations affect key pathways in lung adenocarcinoma. Nature 455, 1069-1075.   DOI
13 Dionne, C.A., Camoratto, A.M., Jani, J.P., Emerson, E., Neff, N., Vaught, J.L., Murakata, C., Djakiew, D., Lamb, J., Bova, S., et al. (1998). Cell cycle-independent death of prostate adenocarcinoma is induced by the trk tyrosine kinase inhibitor CEP-751 (KT6587). Clin. Cancer Res. 4, 1887-1898.
14 Douma, S., Van Laar, T., Zevenhoven, J., Meuwissen, R., Van Garderen, E., and Peeper, D. S. (2004). Suppression of anoikis and induction of metastasis by the neurotrophic receptor TrkB. Nature 430, 1034-1039.   DOI
15 Eades, G., Yang, M., Yao, Y., Zhang, Y., and Zhou, Q. (2011). miR- 200a regulates Nrf2 activation by targeting Keap1 mRNA in breast cancer cells. J. Biol. Chem. 286, 40725-40733.   DOI
16 Eggert, A., Grotzer, M.A., Ikegaki, N., Zhao, H., Cnaan, A., Brodeur, G. M., and Evans, A. E. (2001). Expression of the neurotrophin receptor TrkB is associated with unfavorable outcome in Wilms' tumor. J. Clin. Oncol. 19, 689-696.   DOI
17 Geiger, T.R., and Peeper, D.S. (2005). The neurotrophic receptor TrkB in anoikis resistance and metastasis: a perspective. Cancer Res. 65, 7033-7036.   DOI
18 Hanahan, D., and Weinberg, R.A. (2011). Hallmarks of cancer: the next generation. Cell 144, 646-674.   DOI
19 Goh, Y.M., Cinghu, S., Hong, E.T., Lee, Y.S., Kim, J.H., Jang, J.W., Li, Y.H., Chi, X.Z., Lee, K.S., Wee, H., et al. (2010). Src kinase phosphorylates RUNX3 at tyrosine residues and localizes the protein in the cytoplasm. J. Biol. Chem. 285, 10122-10129.   DOI
20 Hanada, N., Takahata, T., Zhou, Q., Ye, X., Sun, R., Itoh, J., Ishiguro, A., Kijima, H., Mimura, J., Itoh, K., et al. (2012). Methylation of the KEAP1 gene promoter region in human colorectal cancer. BMC Cancer 12, 66.   DOI
21 Hartikainen, J.M., Tengstrom, M., Winqvist, R., Jukkola-Vuorinen, A., Pylkas, K., Kosma, V.M., Soini, Y., and Mannermaa, A. (2015). KEAP1 genetic polymorphisms associate with breast cancer risk and survival outcomes. Clin. Cancer Res. 21, 1591-1601.   DOI
22 Hartwell, K.A., Muir, B., Reinhardt, F., Carpenter, A.E., Sgroi, D.C., and Weinberg, R.A. (2006). The Spemann organizer gene, Goosecoid, promotes tumor metastasis. Proc. Natl. Acad. Sci. USA 103, 18969-18974.   DOI
23 Hennessy, B.T., Gonzalez-Angulo, A.M., Stemke-Hale, K., Gilcrease, M. Z., Krishnamurthy, S., Lee, J.S., Fridlyand, J., Sahin, A., Agarwal, R., Joy, C., et al. (2009). Characterization of a naturally occurring breast cancer subset enriched in epithelial-tomesenchymal transition and stem cell characteristics. Cancer Res. 69, 4116-4124.
24 Huang, B., Qu, Z., Ong, C. W., Tsang, Y. H., Xiao, G., Shapiro, D., Salto-Tellez, M., Ito, K., Ito, Y., and Chen, L.F. (2012). RUNX3 acts as a tumor suppressor in breast cancer by targeting estrogen receptor alpha. Oncogene 31, 527-534.   DOI
25 Jaramillo, M.C., and Zhang, D.D. (2013). The emerging role of the Nrf2-Keap1 signaling pathway in cancer. Genes Dev. 27, 2179-2191.   DOI
26 Knusel, B., and Hefti, F. (1992). K-252 compounds: modulators of neurotrophin signal transduction. J. Neurochem. 59, 1987-1996.
27 Jin, W., Kim, G.M., Kim, M.S., Lim, M.H., Yun, C., Jeong, J., Nam, J.S., and Kim, S.J. (2010). TrkC plays an essential role in breast tumor growth and metastasis. Carcinogenesis 31, 1939-1947.   DOI
28 Ke, B., Shen, X.D., Zhang, Y., Ji, H., Gao, F., Yue, S., Kamo, N., Zhai, Y., Yamamoto, M., Busuttil, R.W., et al. (2013). KEAP1-NRF2 complex in ischemia-induced hepatocellular damage of mouse liver transplants. J. Hepatol. 59, 1200-1207.   DOI
29 Kim, M. S., Lee, W. S., Jeong, J., Kim, S. J., and Jin, W. (2015). Induction of metastatic potential by TrkB via activation of IL6/JAK2/STAT3 and PI3K/AKT signaling in breast cancer. Oncotarget 6, 40158-40171.   DOI
30 Koizumi, S., Contreras, M. L., Matsuda, Y., Hama, T., Lazarovici, P., and Guroff, G. (1988). K-252a: a specific inhibitor of the action of nerve growth factor on PC 12 cells. J. Neurosci. 8, 715-721.   DOI
31 Lee, Y.S., Lee, J.W., Jang, J.W., Chi, X.Z., Kim, J.H., Li, Y.H., Kim, M.K., Kim, D.M., Choi, B.S., Kim, E.G., et al. (2013). Runx3 inactivation is a crucial early event in the development of lung adenocarcinoma. Cancer Cell 24, 603-616.   DOI
32 Lin, F.C., Liu, Y.P., Lai, C.H., Shan, Y.S., Cheng, H.C., Hsu, P.I., Lee, C.H., Lee, Y.C., Wang, H.Y., Wang, C.H., et al. (2012). RUNX3- mediated transcriptional inhibition of Akt suppresses tumorigenesis of human gastric cancer cells. Oncogene 31, 4302-4316.   DOI
33 Lu, J., Guo, H., Treekitkarnmongkol, W., Li, P., Zhang, J., Shi, B., Ling, C., Zhou, X., Chen, T., Chiao, P.J., et al. (2009). 14-3-3zeta Cooperates with ErbB2 to promote ductal carcinoma in situ progression to invasive breast cancer by inducing epithelialmesenchymal transition. Cancer Cell 16, 195-207.   DOI
34 Rizvi, F., Shukla, S., and Kakkar, P. (2014). Essential role of PH domain and leucine-rich repeat protein phosphatase 2 in Nrf2 suppression via modulation of Akt/GSK3beta/Fyn kinase axis during oxidative hepatocellular toxicity. Cell Death Dis. 5, e1153.   DOI
35 Ma, X.J., Salunga, R., Tuggle, J.T., Gaudet, J., Enright, E., McQuary, P., Payette, T., Pistone, M., Stecker, K., Zhang, B.M., et al. (2003). Gene expression profiles of human breast cancer progression. Proc. Natl. Acad. Sci. USA 100, 5974-5979.   DOI
36 Marchetti, A., Felicioni, L., Pelosi, G., Del Grammastro, M., Fumagalli, C., Sciarrotta, M., Malatesta, S., Chella, A., Barassi, F., Mucilli, F., et al. (2008). Frequent mutations in the neurotrophic tyrosine receptor kinase gene family in large cell neuroendocrine carcinoma of the lung. Hum. Mutat. 29, 609-616.   DOI
37 Miknyoczki, S.J., Dionne, C.A., Klein-Szanto, A.J., and Ruggeri, B.A. (1999). The novel Trk receptor tyrosine kinase inhibitor CEP-701 (KT-5555) exhibits antitumor efficacy against human pancreatic carcinoma (Panc1) xenograft growth and in vivo invasiveness. Ann. N Y Acad. Sci. 880, 252-262.   DOI
38 Scheel, C., Eaton, E.N., Li, S.H., Chaffer, C.L., Reinhardt, F., Kah, K.J., Bell, G., Guo, W., Rubin, J., Richardson, A.L., et al. (2011). Paracrine and autocrine signals induce and maintain mesenchymal and stem cell states in the breast. Cell 145, 926-940.   DOI
39 Shibata, T., Kokubu, A., Gotoh, M., Ojima, H., Ohta, T., Yamamoto, M., and Hirohashi, S. (2008). Genetic alteration of Keap1 confers constitutive Nrf2 activation and resistance to chemotherapy in gallbladder cancer. Gastroenterology 135, 1358-1368, 1368 e1351-1354.   DOI
40 Smit, M.A., and Peeper, D.S. (2011). Zeb1 is required for TrkBinduced epithelial-mesenchymal transition, anoikis resistance and metastasis. Oncogene 30, 3735-3744.   DOI