Browse > Article
http://dx.doi.org/10.14348/molcells.2015.2122

Expression and Preliminary Functional Profiling of the let-7 Family during Porcine Ovary Follicle Atresia  

Cao, Rui (Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University)
Wu, Wang Jun (Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University)
Zhou, Xiao Long (Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University)
Xiao, Peng (Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University)
Wang, Yi (Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University)
Liu, Hong Lin (Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University)
Abstract
Most follicles in the mammalian ovary undergo atresia. Granulosa cell apoptosis is a hallmark of follicle atresia. Our previous study using a microRNA (miRNA) microarray showed that the let-7 microRNA family was differentially expressed during follicular atresia. However, whether the let-7 miRNA family members are related to porcine (Sus scrofa) ovary follicular apoptosis is unclear. In the current study, real-time quantitative polymerase chain reaction showed that the expression levels of let-7 family members in follicles and granulosa cells were similar to our microarray data, in which miRNAs let-7a, let-7b, let-7c, and let-7i were significantly decreased in early atretic and progressively atretic porcine ovary follicles compared with healthy follicles, while let-7g was highly expressed during follicle atresia. Furthermore, flow cytometric analysis and Hoechst33342 staining demonstrated that let-7g increased the apoptotic rate of cultured granulosa cells. In addition, let-7 target genes were predicted and annotated by TargetScan, PicTar, gene ontology and Kyoto encyclopedia of genes and genomes pathways. Our data provide new insight into the association between the let-7 miRNA family in granulosa cell programmed death.
Keywords
apoptosis; follicle atresia; let-7; MicroRNA; MiRNA; pig; stem-loop;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bortul, R., Tazzari, P.L., Cappellini, A., Tabellini, G., Billi, A.M., Bareggi, R., Manzoli, L., Cocco, L., and Martelli, A.M. (2003). Constitutively active Akt1 protects HL60 leukemia cells from TRAIL-induced apoptosis through a mechanism involving NF-kappaB activation and cFLIP(L) up-regulation. Leukemia 17, 379-389.   DOI   ScienceOn
2 Carletti, M.Z., Fiedler, S.D., and Christenson, L.K. (2010). MicroRNA 21 blocks apoptosis in mouse periovulatory granulosa cells. Biol. Reprod. 83, 286-295.   DOI   ScienceOn
3 Carson, R.S., Findlay, J.K., Burger, H.G., and Trounson, A.O. (1979). Gonadotropin receptors of the ovine ovarian follicle during follicular growth and atresia. Biol. Reprod. 21, 75-87.   DOI   ScienceOn
4 Chen, C., Ridzon, D.A., Broomer, A.J., Zhou, Z., Lee, D.H., Nguyen, J.T., Barbisin, M., Xu, N.L., Mahuvakar, V.R., and Andersen, M.R. (2005). Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res. 33, e179.   DOI   ScienceOn
5 Cheng, Y., Maeda, A., Goto, Y., Matsuda, F., Miyano, T., Inoue, N., Sakamaki, K., and Manabe, N. (2008). Changes in expression and localization of X-linked inhibitor of apoptosis protein (XIAP) in follicular granulosa cells during atresia in porcine ovaries. J. Reprod. Dev. 54, 454-459.   DOI   ScienceOn
6 Chun, S.Y., Eisenhauer, K.M., Minami, S., Billig, H., Perlas, E., and Hsueh, A.J. (1996). Hormonal regulation of apoptosis in early antral follicles: follicle-stimulating hormone as a major survival factor. Endocrinology 137, 1447-1456.   DOI
7 Craig, J., Orisaka, M., Wang, H., Orisaka, S., Thompson, W., Zhu, C., Kotsuji, F., and Tsang, B.K. (2007). Gonadotropin and intraovarian signals regulating follicle development and atresia: the delicate balance between life and death. Front. Biosci. 12, 3628-3639.   DOI
8 Dai, L., Tsai-Morris, C.H., Sato, H., Villar, J., Kang, J.H., Zhang, J., and Dufau, M.L. (2011). Testis-specific miRNA-469 up-regulated in gonadotropin-regulated testicular RNA helicase (GRTH/DDX25)-null mice silences transition protein 2 and protamine 2 messages at sites within coding region: implications of its role in germ cell development. J. Biol. Chem. 286, 44306-44318.   DOI
9 Eulalio, A., Huntzinger, E., Nishihara, T., Rehwinkel, J., Fauser, M., and Izaurralde, E. (2009). Deadenylation is a widespread effect of miRNA regulation. RNA 15, 21-32.
10 Diskin, M.G., Mackey, D.R., Roche, J.F., and Sreenan, J.M. (2003). Effects of nutrition and metabolic status on circulating hormones and ovarian follicle development in cattle. Anim. Reprod. Sci. 78, 345-370.   DOI   ScienceOn
11 Fu, T.Y., Lin, C.T., and Tang, P.C. (2011). Steroid hormoneregulated let-7b mediates cell proliferation and basigin expression in the mouse endometrium. J. Reprod. Dev. 57, 627-635.   DOI   ScienceOn
12 Guthrie, H.D., Cooper, B.S., Welch, G.R., Zakaria, A.D., and Johnson, L.A. (1995). Atresia in follicles grown after ovulation in the pig: measurement of increased apoptosis in granulosa cells and reduced follicular fluid estradiol-17 beta. Biol. Reprod. 52, 920-927.   DOI   ScienceOn
13 Hay, M.R., Cran, D.G., and Moor, R.M. (1976). Structural changes occurring during atresia in sheep ovarian follicles. Cell Tissue Res. 169, 515-529.
14 Hillier, S.G., and Tetsuka, M. (1997). Role of androgens in follicle maturation and atresia. Baillieres Clin. Obstet. Gynaecol. 11, 249-260.   DOI
15 Hsueh, A.J., Billig, H., and Tsafriri, A. (1994). Ovarian follicle atresia: a hormonally controlled apoptotic process. Endocr. Rev. 15, 707-724.
16 Hughes, F.M., Jr., and Gorospe, W.C. (1991). Biochemical identification of apoptosis (programmed cell death) in granulosa cells: evidence for a potential mechanism underlying follicular atresia. Endocrinology 129, 2415-2422.   DOI   ScienceOn
17 Li, M., Xia, Y., Gu, Y., Zhang, K., Lang, Q., Chen, L., Guan, J., Luo, Z., Chen, H., Li, Y., et al., (2010). MicroRNAome of porcine pre- and postnatal development. PLoS One 5, e11541.   DOI   ScienceOn
18 Huntzinger, E., and Izaurralde, E. (2011). Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat. Rev. Genet. 12, 99-110.   DOI   ScienceOn
19 Le, M.T., Shyh-Chang, N., Khaw, S.L., Chin, L., Teh, C., Tay, J., O'Day, E., Korzh, V., Yang, H., Lal, A., et al. (2011). Conserved regulation of p53 network dosage by microRNA-125b occurs through evolving miRNA-target gene pairs. PLoS Genet. 7, e1002242.   DOI
20 Li, P., Nijhawan, D., Budihardjo, I., Srinivasula, S.M., Ahmad, M., Alnemri, E.S., and Wang, X. (1997). Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91, 479-489.   DOI   ScienceOn
21 Li, M., Liu, Y., Wang, T., Guan, J., Luo, Z., Chen, H., Wang, X., Chen, L., Ma, J., Mu, Z., et al. (2011). Repertoire of porcine microRNAs in adult ovary and testis by deep sequencing. Int. J. Biol. Sci. 7, 1045-1055.   DOI
22 Lian, C., Sun, B., Niu, S., Yang, R., Liu, B., Lu, C., Meng, J., Qiu, Z., Zhang, L., and Zhao, Z. (2012). A comparative profile of the microRNA transcriptome in immature and mature porcine testes using Solexa deep sequencing. FEBS J. 279, 964-975.   DOI   ScienceOn
23 Lin, P.F., Hao, Y.B., Guo, H.L., Liu, H.L., and Rui, R. (2010). Role of Fas/FasL on apoptosis of porcine follicular granulosa cells derived from isolated follicles during culture in vitro. Dongwuxue Yanjiu 31, 268-274.
24 Matsuda-Minehata, F., Inoue, N., Goto, Y., and Manabe, N. (2006). The regulation of ovarian granulosa cell death by pro- and anti-apoptotic molecules. J. Reprod. Dev. 52, 695-705.   DOI   ScienceOn
25 Lin, F., Li, R., Pan, Z.X., Zhou, B., Yu de, B., Wang, X.G., Ma, X.S., Han, J., Shen, M., and Liu, H.L. (2012). miR-26b promotes granulosa cell apoptosis by targeting ATM during follicular atresia in porcine ovary. PLoS One 7, e38640.   DOI
26 Manabe, N., Imai, Y., Ohno, H., Takahagi, Y., Sugimoto, M., and Miyamoto, H. (1996). Apoptosis occurs in granulosa cells but not cumulus cells in the atretic antral follicles in pig ovaries. Experientia 52, 647-651.   DOI   ScienceOn
27 Manabe, N., Goto, Y., Matsuda-Minehata, F., Inoue, N., Maeda, A., Sakamaki, K., and Miyano, T. (2004). Regulation mechanism of selective atresia in porcine follicles: regulation of granulosa cell apoptosis during atresia. J. Reprod. Dev. 50, 493-514.   DOI   ScienceOn
28 Meng, F., Glaser, S.S., Francis, H., DeMorrow, S., Han, Y., Passarini, J.D., Stokes, A., Cleary, J.P., Liu, X., Venter, J., et al. (2012). Functional analysis of microRNAs in human hepatocellular cancer stem cells. J. Cell. Mol. Med. 16, 160-173.   DOI   ScienceOn
29 Pasquinelli, A.E., Reinhart, B.J., Slack, F., Martindale, M.Q., Kuroda, M.I., Maller, B., Hayward, D.C., Ball, E.E., Degnan, B., Muller, P., et al. (2000). Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408, 86-89.   DOI   ScienceOn
30 Qian, P., Zuo, Z., Wu, Z., Meng, X., Li, G., Wu, Z., Zhang, W., Tan, S., Pandey, V., Yao, Y., et al. (2011). Pivotal role of reduced let-7g expression in breast cancer invasion and metastasis. Cancer Res. 71, 6463-6474.   DOI
31 Sugimoto, M., Manabe, N., Kimura, Y., MYOUMOTO, A., IMAI, Y., OHNO, H. and MIYAMOTO, H. (1998). Ultrastructural changes in granulosa cells in porcine antral follicles undergoing atresia indicate apoptotic cell death. J. Reprod. Dev. 44, 7-14.   DOI   ScienceOn
32 Reinhart, B.J., Slack, F.J., Basson, M., Pasquinelli, A.E., Bettinger, J.C., Rougvie, A.E., Horvitz, H.R., and Ruvkun, G. (2000). The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403, 901-906.   DOI   ScienceOn
33 Sasson, R., Winder, N., Kees, S., and Amsterdam, A. (2002). Induction of apoptosis in granulosa cells by TNF alpha and its attenuation by glucocorticoids involve modulation of Bcl-2. Biochem. Biophys. Res. Commun. 294, 51-59.   DOI   ScienceOn
34 Shimizu, S., Takehara, T., Hikita, H., Kodama, T., Miyagi, T., Hosui, A., Tatsumi, T., Ishida, H., Noda, T., Nagano, H., et al. (2010). The let-7 family of microRNAs inhibits Bcl-xL expression and potentiates sorafenib-induced apoptosis in human hepatocellular carcinoma. J. Hepatol. 52, 698-704.   DOI   ScienceOn
35 Tilly, J.L., Kowalski, K.I., Johnson, A.L., and Hsueh, A. (1991). Involvement of apoptosis in ovarian follicular atresia and postovulatory regression. Endocrinology 129, 2799-2801.   DOI   ScienceOn
36 Tilly, J.L., and Tilly, K.I. (1995). Inhibitors of oxidative stress mimic the ability of follicle-stimulating hormone to suppress apoptosis in cultured rat ovarian follicles. Endocrinology 136, 242-252.   DOI
37 Trang, P., Medina, P.P., Wiggins, J.F., Ruffino, L., Kelnar, K., Omotola, M., Homer, R., Brown, D., Bader, A.G., Weidhaas, J.B., et al. (2010). Regression of murine lung tumors by the let-7 microRNA. Oncogene 29, 1580-1587.   DOI   ScienceOn
38 Xie, S.S., Huang, T.H., Shen, Y., Li, X.Y., Zhang, X.X., Zhu, M.J., Qin, H.Y. and Zhao, S.H. (2010). Identification and characterization of microRNAs from porcine skeletal muscle. Anim. Genet. 41, 179-190.   DOI   ScienceOn
39 Tsang, W.P., and Kwok, T.T. (2008). Let-7a microRNA suppresses therapeutics-induced cancer cell death by targeting caspase-3. Apoptosis 13, 1215-1222.   DOI
40 Wada, S., Manabe, N., Nakayama, M., Inou, N., Matsui, T., and Miyamoto, H. (2002). TRAIL-decoy receptor 1 plays inhibitory role in apoptosis of granulosa cells from pig ovarian follicles. J. Vet. Med. Sci. 64, 435-439.   DOI   ScienceOn
41 Yamagata, K., Fujiyama, S., Ito, S., Ueda, T., Murata, T., Naitou, M., Takeyama, K., Minami, Y., O'Malley, B.W., et al. (2009). Maturation of microRNA is hormonally regulated by a nuclear receptor. Mol. Cell. 36, 340-347.   DOI   ScienceOn