• 제목/요약/키워드: Functional molecules

검색결과 678건 처리시간 0.033초

Intercalation of Functional Organic Molecules with Pharmaceutical, Cosmeceutical and Nutraceutical Functions into Layered Double Hydroxides and Zinc Basic Salts

  • 황성호;한양수;최진호
    • Bulletin of the Korean Chemical Society
    • /
    • 제22권9호
    • /
    • pp.1019-1022
    • /
    • 2001
  • Negatively charged functional organic molecules such as retinoic acid, ascorbic acid, indole acetic acid, citric acid, salicylic acid, acidic dye (indigo carmine, Food Blue 1) are intercalatively encapsulated by zinc basic salt (hydrozincite) and layered double hydroxide. Such functional organic-inorganic nanohybrids are realized via coprecipitation reaction involving simultaneous formation of layered inorganic lattice and intercalation of anionic species. The heterostructural nature of these nanohybrids, their particle morphology and textural characterizations are mainly discussed on the basis of Powder X-ray Diffraction and Field Emission Scanning Electron Microscopy results.

The Characteristics of Molecular Conjugated Optical Sensor Based on Silicon Nanowire FET

  • 이동진;김태근;황동훈;황종승;황성우
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.486-486
    • /
    • 2013
  • Silicon nanowire devices fabricated by bottom-up methods are attracted due to their electrical, mechanical, and optical properties. Especially, to functionalize the surface of silicon nanowires by molecules has received interests. The changes in the characteristics of the molecules is delivered directly to the surface of the silicon nanowires so that the silicon nanowire can be utilized as an efficient read-out device by using the electronic state change of molecules. The surface treatment of the silicon nanowire with light-sensitive molecules can change its optical characteristics greatly. In this paper, we present the optical response of a SiNW field-effect-transistor (FET) conjugated with porphyrin molecules. We fabricated a SiNW FET and performed porphyrin conjugation on its surface. The characteristic and the optical response of the device shows a large difference after conjugation while there is not much change of the surface in the SEM observation. It attributed to the existence of few layer porphyrin molecules on the SiNW surface and efficient variation of the surface potential of the SiNW due to light irradiation.

  • PDF

Biotransformation of natural polyacetylene in red ginseng by Chaetomium globosum

  • Wang, Bang-Yan;Yang, Xue-Qiong;Hu, Ming;Shi, Li-Jiao;Yin, Hai-Yue;Wu, Ya-Mei;Yang, Ya-Bin;Zhou, Hao;Ding, Zhong-Tao
    • Journal of Ginseng Research
    • /
    • 제44권6호
    • /
    • pp.770-774
    • /
    • 2020
  • Background: Fermentation has been shown to improve the biological properties of plants and herbs. Specifically, fermentation causes decomposition and/or biotransformation of active metabolites into high-value products. Polyacetylenes are a class of polyketides with a pleiotropic profile of bioactivity. Methods: Column chromatography was used to isolate compounds, and extensive NMR experiments were used to determine their structures. The transformation of polyacetylene in red ginseng (RG) and the production of cazaldehyde B induced by the extract of RG were identified by TLC and HPLC analyses. Results: A new metabolite was isolated from RG fermented by Chaetomium globosum, and this new metabolite can be obtained by the biotransformation of polyacetylene in RG. Panaxytriol was found to exhibit the highest antifungal activity against C. globosum compared with other major ingredients in RG. The fungus C. globosum cultured in RG extract can metabolize panaxytriol to Metabolite A to survive, with no antifungal activity against itself. Metabolites A and B showed obvious inhibition against NO production, with ratios of 42.75 ± 1.60 and 63.95 ± 1.45% at 50 µM, respectively. A higher inhibitory rate on NO production was observed for Metabolite B than for a positive drug. Conclusion: Metabolite A is a rare example of natural polyacetylene biotransformation by microbial fermentation. This biotransformation only occurred in fermented RG. The extract of RG also stimulated the production of a new natural product, cazaldehyde B, from C. globosum. The lactone in Metabolite A can decrease the cytotoxicity, which was deemed to be the intrinsic activity of polyacetylene in ginseng.

Ginsenoside Rh2 attenuates microglial activation against toxoplasmic encephalitis via TLR4/NF-κB signaling pathway

  • Xu, Xiang;Jin, Lan;Jiang, Tong;Lu, Ying;Aosai, Fumie;Piao, Hu-Nan;Xu, Guang-Hua;Jin, Cheng-Hua;Jin, Xue-Jun;Ma, Juan;Piao, Lian-Xun
    • Journal of Ginseng Research
    • /
    • 제44권5호
    • /
    • pp.704-716
    • /
    • 2020
  • Background: Ginsenoside Rh2 (GRh2) is a characterized component in red ginseng widely used in Korea and China. GRh2 exhibits a wide range of pharmacological activities, such as anti-inflammatory, antioxidant, and anticancer properties. However, its effects on Toxoplasma gondii (T. gondii) infection have not been clarified yet. Methods: The effect of GRh2 against T. gondii was assessed under in vitro and in vivo experiments. The BV2 cells were infected with tachyzoites of T. gondii RH strain, and the effects of GRh2 were evaluated by MTT assay, morphological observations, immunofluorescence staining, a trypan blue exclusion assay, reverse transcription PCR, and Western blot analyses. The in vivo experiment was conducted with BALB/c mice inoculated with lethal amounts of tachyzoites with or without GRh2 treatment. Results and conclusion: The GRh2 treatment significantly inhibited the proliferation of T. gondii under in vitro and in vivo studies. Furthermore, GRh2 blocked the activation of microglia and specifically decreased the release of inflammatory mediators in response to T. gondii infection through TLR4/NF-κB signaling pathway. In mice, GRh2 conferred modest protection from a lethal dose of T. gondii. After the treatment, the proliferation of tachyzoites in the peritoneal cavity of infected mice markedly decreased. Moreover, GRh2 also significantly decreased the T. gondii burden in mouse brain tissues. These findings indicate that GRh2 exhibits an antieT. gondii effect and inhibits the microglial activation through TLR4/NF-κB signaling pathway, providing the basic pharmacological basis for the development of new drugs to treat toxoplasmic encephalitis.

Cloning and Characterization of Ginsenoside-Hydrolyzing β-Glucosidase from Lactobacillus brevis That Transforms Ginsenosides Rb1 and F2 into Ginsenoside Rd and Compound K

  • Zhong, Fei-Liang;Ma, Rui;Jiang, Mingliang;Dong, Wei-Wei;Jiang, Jun;Wu, Songquan;Li, Donghao;Quan, Lin-Hu
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권10호
    • /
    • pp.1661-1667
    • /
    • 2016
  • The ginsenoside-hydrolyzing β-glucosidase gene (bgy2) was cloned from Lactobacillus brevis. We expressed this gene in Escherichia coli BL21(DE3), isolated the resulting protein, and then utilized the enzyme for the biotransformation of ginsenosides. The bgy2 gene contains 2,223 bp, and encodes a protein of 741 amino acids that is a member of glycosyl hydrolase family 3. β-Glucosidase (Bgy2) cleaved the outer glucose moieties of ginsenosides at the C-20 position, and the inner glucose at the C-3 position. Under optimal conditions (pH 7.0, 30℃), we used 0.1 mg/ml Bgy2 in 20 mM sodium phosphate buffer (PBS) for enzymatic studies. In these conditions, 1.0 mg/ml ginsenoside Rb1 and ginsenoside F2 were converted into 0.59 mg/ml ginsenoside Rd and 0.72mg/ml compound K, with molar conversion productivities of 69% and 91%, respectively. In pharmaceutical and commercial industries, this recombinant Bgy2 would be suitable for producting ginsenoside Rd and compound K.

Biotransformation of Panax ginseng extract by rat intestinal microflora: identification and quantification of metabolites using liquid chromatography-tandem mass spectrometry

  • Dong, Wei-Wei;Zhao, Jinhua;Zhong, Fei-Liang;Zhu, Wen-Jing;Jiang, Jun;Wu, Songquan;Yang, Deok-Chun;Li, Donghao;Quan, Lin-Hu
    • Journal of Ginseng Research
    • /
    • 제41권4호
    • /
    • pp.540-547
    • /
    • 2017
  • Background: In general, after Panax ginseng is administered orally, intestinal microbes play a crucial role in its degradation and metabolization process. Studies on the metabolism of P. ginseng by microflora are important for obtaining a better understanding of their biological effects. Methods: In vitro biotransformation of P. ginseng extract by rat intestinal microflora was investigated at $37^{\circ}C$ for 24 h, and the simultaneous determination of the metabolites and metabolic profile of P. ginseng saponins by rat intestinal microflora was achieved using LC-MS/MS. Results: A total of seven ginsenosides were detected in the P. ginseng extract, including ginsenosides Rg1, Re, Rf, Rb1, Rc, Rb2, and Rd. In the transformed P. ginseng samples, considerable amounts of deglycosylated metabolite compound K and Rh1 were detected. In addition, minimal amounts of deglycosylated metabolites (ginsenosides Rg2, F1, F2, Rg3, and protopanaxatriol-type ginsenosides) and untransformed ginsenosides Re, Rg1, and Rd were detected at 24 h. The results indicated that the primary metabolites are compound K and Rh1, and the protopanaxadiol-type ginsenosides were more easily metabolized than protopanaxatriol-type ginsenosides. Conclusion: This is the first report of the identification and quantification of the metabolism and metabolic profile of P. ginseng extract in rat intestinal microflora using LC-MS/MS. The current study provided new insights for studying the metabolism and active metabolites of P. ginseng.

Isolation and Identification of Antioxidants from Peanut Shells and the Relationship between Structure and Antioxidant Activity

  • Wee, Ji-Hyang;Moon, Jae-Hak;Eun, Jong-Bang;Chung, Jin-Ho;Kim, Young-Gook;Park, Keun-Hyung
    • Food Science and Biotechnology
    • /
    • 제16권1호
    • /
    • pp.116-122
    • /
    • 2007
  • Four compounds with antioxidant activity were isolated from the MeOH extract of peanut shells (pod) and identified as 5,7-dihydroxychromone (1), eriodictyol (2), 3',4',7-trihydroxyflavanone (3), and luteolin (4) by electron impact-mass spectrometry (EI-MS) and nuclear magnetic resonance (NMR) analyses. The relationship between antioxidant activity and chemical structure of the isolated compounds with their analogues [(-)-epicatechin, quercetin, taxifolin] was examined by measuring 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging activity and using the 2-deoxy-D-ribose degradation system. The order of antioxidant activity on the basis of DPPH radical-scavenging was quercetin = (-)-epicatechin (6.0 molecules) > taxifolin (4,5 molecules) > 4 (luteolin; 4.0 molecules) > 2 (eriodictyol; 2.5 molecules) > 3 (3',4',7-trihydroxy-flavanone; 2.0 molecules) > 1 (5,7-dihydroxychromone; 0.5 molecules). On the other hand, using the 2-deoxy-D-ribose degradation system, the order of antioxidant activity was quercetin > 4 >> (-)-epicatechin ${\geq}\;2\;{\geq}$ taxifolin > 3 > 1. These compounds from peanut shells may provide defensive measures against oxidative stress and insects in the soil.

CD29 및 CD98 활성 매개에 의한 Jurkat T 세포의 유착과 그 활용 (Cell-cell Adhesion of Jurkat T Cells Induced by CD29 and CD98 Activation and its Application)

  • 김병훈;조재열
    • 약학회지
    • /
    • 제53권3호
    • /
    • pp.119-124
    • /
    • 2009
  • Cell-cell adhesion managed by various adhesion molecules plays an important role in regulating functional activation of cells. This event mediates attachment of inflammatory cells to endothelial cells, interaction of antigen-presenting cells with T cells and metastatic adherence of cancer cells to epithelial tissue cells. Therefore, this cellular response is considered as one of therapeutic target to treat various cancers and inflammatory diseases. To develop proper model for evaluation of functional activation of adhesion molecules, the ability of U937 and Jurkat T cells responsive to various adhesion inducers such as phorbal-12-myristate-13-acetate (PMA), staurosporin and monoclonal antibodies to CD29, CD43 and CD98 was investigated using quantitative cell-cell adhesion assay. U937 cells made more cell-cell clusters by the treatment of antibodies to CD29 and CD43 than Jurkat T cells, while Jurkat T cells exhibited increased cell-cell adhesion ability in CD98 antibody treatment. In agreement, the surface levels of CD29 and CD98 were highly observed in U937 and Jurkat T cells, respectively. Therefore, our data suggest that Jurkat T and U937 cells can be used for model system to evaluate functional activation of adhesion molecules such as CD29 and CD98.

UV Laser를 이용한 광화학적 패터닝과 습식에칭에 따른 알칸티올 분자 작용기의 특성 연구 (A Study on the Characteristics of the Functional Groups of the Alkanethiol Molecules in UV Laser Photochemical Patterning and Wet Etching Process)

  • 허갑수;장원석
    • 한국정밀공학회지
    • /
    • 제24권5호
    • /
    • pp.104-109
    • /
    • 2007
  • Photochemical patterning of self-assembled mono layers (SAMs) has been performed by diode pumped solid state (DPSS) 3rd harmonic Nd:$YVO_4$ laser with wavelength of 355 nm. SAMs patternings of parallel lines have subsequently been used either to generate compositional chemical patterns or fabricate microstructures by a wet etching. This paper describes a selective etching process with patterned SAMs of alkanetiolate molecules on the surface of gold. SAMs formed by the adsorption of alkanethiols onto gold substrate employs as very thin photoresists. In this paper, the influence of the interaction between the functional group of SAMs and the etching solution is studied with optimal laser irradiation conditions. The results show that hydrophobic functional groups of SAMs are more effective for selective chemical etching than the hydrophilic ones.