Isolation and Identification of Antioxidants from Peanut Shells and the Relationship between Structure and Antioxidant Activity

  • Wee, Ji-Hyang (Department of Food Science and Technology and Functional Food Research Center, Chonnam National University) ;
  • Moon, Jae-Hak (Department of Food Science and Technology and Functional Food Research Center, Chonnam National University) ;
  • Eun, Jong-Bang (Department of Food Science and Technology and Functional Food Research Center, Chonnam National University) ;
  • Chung, Jin-Ho (Department of Food Science and Technology and Functional Food Research Center, Chonnam National University) ;
  • Kim, Young-Gook (Dasan Institute of Life and Science) ;
  • Park, Keun-Hyung (Department of Food Science and Technology and Functional Food Research Center, Chonnam National University)
  • Published : 2007.02.28

Abstract

Four compounds with antioxidant activity were isolated from the MeOH extract of peanut shells (pod) and identified as 5,7-dihydroxychromone (1), eriodictyol (2), 3',4',7-trihydroxyflavanone (3), and luteolin (4) by electron impact-mass spectrometry (EI-MS) and nuclear magnetic resonance (NMR) analyses. The relationship between antioxidant activity and chemical structure of the isolated compounds with their analogues [(-)-epicatechin, quercetin, taxifolin] was examined by measuring 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging activity and using the 2-deoxy-D-ribose degradation system. The order of antioxidant activity on the basis of DPPH radical-scavenging was quercetin = (-)-epicatechin (6.0 molecules) > taxifolin (4,5 molecules) > 4 (luteolin; 4.0 molecules) > 2 (eriodictyol; 2.5 molecules) > 3 (3',4',7-trihydroxy-flavanone; 2.0 molecules) > 1 (5,7-dihydroxychromone; 0.5 molecules). On the other hand, using the 2-deoxy-D-ribose degradation system, the order of antioxidant activity was quercetin > 4 >> (-)-epicatechin ${\geq}\;2\;{\geq}$ taxifolin > 3 > 1. These compounds from peanut shells may provide defensive measures against oxidative stress and insects in the soil.

Keywords

References

  1. Halliwell B. Free radicals, antioxidants, and human disease: Curiosity, cause, or consequency. Lancet 344: 721-724 (1994) https://doi.org/10.1016/S0140-6736(94)92211-X
  2. Gutteridge JMC, Halliwell B. Antioxidants in Nutrition, Health, and Disease. Oxford University Press, Oxford, UK. pp. 1-62 (1994)
  3. Halliwell BH, Gutteridge JMC, Arouoma OI. The deoxyribose method: a simple 'test-tube' assay for determination of rate constants for reactions of hydroxyl radicals. Anal. Biochem. 165: 215-219 (1987) https://doi.org/10.1016/0003-2697(87)90222-3
  4. Branen AL. Toxicological and biochemistry of butylated hydroxytoluene, butylated hydroxyanisole. J. Am. Oil Chem. Soc. 52: 59-63 (1975) https://doi.org/10.1007/BF02901825
  5. Ensminger AH, Ensminger ME, Konlande JE, Robson JRK. Foods and Nutrition Encyclopedia. Vol. 2, 1st ed. Pegus Press, CA, USA. p. 1727 (1989)
  6. Cho JY, Moon JH, Seong KY, Park KH. Antimicrobial activity of 4-hydroxybenzoic acid and trans 4-hydroxycinnamic acid isolated and identified from rice hull. Biosci. Biotech. Bioch. 62: 2273-2276 (1998) https://doi.org/10.1271/bbb.62.2273
  7. Xang Y, White PJ. Identification and function of antioxidants from oat groats and hulls. J. Am. Oil Chem. Soc. 74: 303-307 (1997) https://doi.org/10.1007/s11746-997-0141-x
  8. Wee JH, Park KH. Identification of 3-methoxy-4-hydroxybenzoic acid and 4-hydroxybenzoic acid with antioxidative and antimicrobial activity from Arachis hypogaea shell. Korean J. Biotechnol. Bioeng. 15: 464-468 (2000)
  9. Wee JH, Park KH. Isolation of 4-hydroxycinnamic acid, 3-methoxy4-hydroxycinnamic acid, and 3,4-dihydroxybenzoic acid with antioxidative and antimicrobial activity from Arachis hypogaea shell. Food Sci. Biotechnol. 10: 551-556 (2001)
  10. Wee JH, Moon JH, Park KH. Isolation and identification of pratensein with antimicrobial activity from the peanut shells. Korean J. Food Sci. Technol. 36: 643-647 (2004)
  11. Jang MY, Cho JY, Cho JI, Moon JH, Park KH. Isolation of compounds with antioxidative activity from quickly fermented soybased foods. Food Sci. Biotechnol. 15: 214-219 (2006)
  12. Cho JY, Kawazoe K, Moon JH, Park KH, Murakami K, Takaishi Y. Chemical constituents from the fruit peels of Fortunella japonica. Food Sci. Biotechnol. 14: 599-603 (2005)
  13. Abe N, Nemoto A, Tsuchiya Y, Hojo H, Hirota A. Studies of the 1,1-diphenyl-2-picrylhydrazyl radical scavenging mechanism for a 2-pyrone compound. Biosci. Biotech. Bioch. 64: 306-333 (2000) https://doi.org/10.1271/bbb.64.306
  14. Takao T, Kitatani F, Sakata K. A simple screening method for antioxidants and isolation of several antioxidants produced by marine bacteria from fish and shellfish. Biosci. Biotech. Bioch. 58: 1780-1783 (1994) https://doi.org/10.1271/bbb.58.1780
  15. Yamamoto N, Moon JH, Tsushida T, Nagao A, Terao J. Inhibitory effect of quercetin metabolites and their related derivatives on copper ion-induced lipid peroxidation in human low-density lipoprotein. Arch. Biochem. Biophys. 372: 347-354 (1999) https://doi.org/10.1006/abbi.1999.1516
  16. Kim SJ, Cho JY, Wee JH, Jang MY, Kim C, Rim YS, Shin SC, Ma SJ, Moon JH, Park KH. Isolation and characterization of antioxidative compounds from the aerial parts of Angelica keiskei. Food Sci. Biotechnol. 14: 58-63 (2005)
  17. Lopes GKB, Schulman HM, Hermes-Lima M. Polyphenol tannic acid inhibits hydroxyl radical formation from Fenton reaction by complexing ferrous ions. Biochim. Biophys. Acta 1472: 142-152 (1999) https://doi.org/10.1016/S0304-4165(99)00117-8
  18. Spencer GF. A convenient synthesis of 5,7-dihydroxychromone. OPPI Briefs 23: 390-392 (1991)
  19. Delucca AJ, Palmgren MS, Daigle DJ. Depression of aflatoxin production by flavonoid-type compounds from peanut shells. Phytopathology 77: 1560-1563 (1987) https://doi.org/10.1094/Phyto-77-1560
  20. Chan SC, Chang YS, Wang JP, Chen SC, Kuo SC. Three new flavonoids and antiallergic, anti-inflammatory constituents from the heartwood of Dalbergia odorifera. Planta Med. 64: 153-158 (1998) https://doi.org/10.1055/s-2006-957394
  21. Jurd L, Manners GD. Isoflavone, Isoflavan, and flavonoid constituents of Gliricidia speium. J. Agr. Food Chem. 25: 723-726 (1977) https://doi.org/10.1021/jf60212a034
  22. Kitanaka S, Takido M. Demethyltorosaflavones C and D from Cassia nomame. Phytochemistry 31: 2927-2929 (1992) https://doi.org/10.1016/0031-9422(92)83671-K
  23. Miyake Y, Yamamoto K, Morimitsu Y, Osawa T. Isolation of C-glucosylflavone from lemon peel and antioxidative activity of flavonoid compounds in lemon fruit. J. Agr. Food Chem. 45: 4619-4623 (1997) https://doi.org/10.1021/jf970498x
  24. Miyake Y, Yamamoto K, Osawa T. Metabolism of antioxidant in lemon fruits (Citrus limon $B_{URM}$. f.) by human intestinal bacteria. J. Agr. Food Chem. 45: 3738-3742 (1997) https://doi.org/10.1021/jf970403r
  25. Yamamoto H, Ogawa T. Antimicrobial activity of perilla seed polyphenols against oral pathogenic bacteria. Biosci. Biotech. Bioch. 66: 921-924 (2002) https://doi.org/10.1271/bbb.66.921
  26. Ueda H, Yamazaki C, Yamazaki M. Luteolin as an anti-inflammatory and anti-allergic constituent of Perilla frutescens. Biol. Pharm. Bull. 25: 1197-1202 (2002) https://doi.org/10.1248/bpb.25.1197
  27. Bors W, Heller W, Michel C, Saran N. Flavonoids as antioxidants determination of radical-scavenging efficiences. Method Enzymol. 186: 343-355 (1990) https://doi.org/10.1016/0076-6879(90)86128-I
  28. Terao J, Piskula M, Yao Q. Protective effect of epicatechin, epicatechin gallate and quercetin on lipid peroxidation in phospholipid bilayers. Arch. Biochern. Biophys. 308: 278-284 (1994) https://doi.org/10.1006/abbi.1994.1039
  29. Cao G, Sofie E, Prior RL. Antioxidant and prooxidant behavior of flavonoids: Structure-activity relationships. Free Radical Bio, Med. 22: 749-760 (1997) https://doi.org/10.1016/S0891-5849(96)00351-6
  30. Rice-Evans CA, Miller NJ, Paganga G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Bio. Med. 20: 933-956 (1996) https://doi.org/10.1016/0891-5849(95)02227-9
  31. Sawai Y, Moon JH, Sakata K, Watanabe N. Effect of structure on radical-scavenging abilities and antioxidative activities of tea polyphenols: NMR analytical approach using 1,1-diphenyl-2-picrylhydrazyl radicals. J. Agr. Food Chem. 53: 3598-3604 (2005) https://doi.org/10.1021/jf040423a
  32. Sawai Y, Moon JH. NMR analytical approach to clarify the molecular mechanism of the antioxidative and radical-scavenging activities of antioxidants in tea using 1, 1-diphenyl-2-picrylhydrazyl. J. Agr. Food Chem. 48: 6247-6253 (2000) https://doi.org/10.1021/jf000500b
  33. Saito S, Okamoto Y, Kawabata J, Kasai T. Quinone hemiacetal formation from protocatechuic acid during the DPPH radical scavenging reaction. Biosci. Biotech. Bioch. 67: 1578-1579 (2003) https://doi.org/10.1271/bbb.67.1578
  34. Saito S, Kawabata J. Synergistic effects of thiols and amines on antiradical efficiency of protocatechuic acid. J. Agr. Food Chem. 52: 8163-8168 (2004) https://doi.org/10.1021/jf048970j
  35. Kawabata J, Okamoto Y, Kodama A, Makimoto T, Kasai T. Oxidative dimers produced from protocatechuic and gallic esters in the DPPH radical scavenging reaction. J. Agr. Food Chem. 50: 5468-5471 (2002) https://doi.org/10.1021/jf020347g
  36. Abe N, Murata T, Yamamoto K, Hirota A. Bisorbibetanone, a novel oxidized sorbicillin dimer, with 1, 1-diphenyl-2-picrylhydrazyl radical scavenging activity from a fungus. Tetrahedron Lett. 40: 5203-5206 (1999) https://doi.org/10.1016/S0040-4039(99)00938-7
  37. Abe N, Murata T, Hirota A. Novel oxidized sorbicillin dimer with 1,1-diphenyl-2-picrylhydrazyl-radical scavenging activity from a fungus. Biosci. Biotech. Bioch. 62: 2120-2126 (1998) https://doi.org/10.1271/bbb.62.2120