• Title/Summary/Keyword: Functional cysteine

Search Result 86, Processing Time 0.023 seconds

Cloning and Nucleotide Sequence of a cDNA Encoding the Rat Triosephosphate Isomerase

  • Lee, Kyunglim;Ryu, Jiwon
    • Archives of Pharmacal Research
    • /
    • v.19 no.6
    • /
    • pp.497-501
    • /
    • 1996
  • A gene coding for triosephosphate isomerase (TPI) from a rat skeletal muscle cDNA library was cloned and its nucleotide sequence was determined. The 1, 348-bp cDNA clone contains 24 bp $5^I$ noncoding region, the entire 750 bp coding region corresponding to a protein of 249 amino acids, $547bp 3^I$ noncoding region and part of a poly(A) tail. It also contains a polyadenylation signal, AATAAA, starting from 17 bp upstream of the poly(A) tail. The calculated molecular weight of rat TPI is 27.8 kDa and the net charge is +4. The deduced amino acid sequence from rat TPI CDNA sequence has 93% and 94% homology with that of mouse and human clones, respectively. The amino acids at the residue of Asn12, Lys14, His96, Glu 166, His96, His101, Ala177, Tyr165, Glu13O, Tyr2O9, and Ser212 in catalytic site are completely identical, confirming that the functional residues in TPI proteins are highly conserved throughout evolution. The most profound characteristic of rat TPI enzyme, compared with other TPIs, is that there are five cysteine substitutions at the residue of 21, 27, 159, 195 and 204. A Glu123 instead of Gly was found in rabbit, rhesus, mouse and human sequences. Through the method of RT-PCR, the mRNA transcription level of TPI gene was found to be different among various tissues and was highest in muscle.

  • PDF

Increased Expression of CTGF in Periodontitis Tissue and Its Role for Enhanced Mature Osteoclast Survival (치주염 조직에서 발현이 증가하는 CTGF에 의한 파골세포 생존 증가)

  • Han, Hye-Yeon;Park, Jong-Cheol;Ryu, Mi Heon;Bae, Moon-Kyoung;Kim, Hyung Joon
    • The Korean Journal of Oral and Maxillofacial Pathology
    • /
    • v.41 no.4
    • /
    • pp.155-162
    • /
    • 2017
  • Connective tissue growth factor (CTGF, CCN2) is one of the multi-functional secreted proteins which belong to CCN family of cysteine-rich growth factors. CTGF is known to have pivotal roles in embryonic endochondral ossification but its role in relevance to periodontitis is never been determined. To identify new molecular mediators associated with periodontitis-induced bone resorption, we have analyzed publicly available GEO database and found the markedly augmented CTGF mRNA expression in periodontitis gingival tissues. The existence of CTGF significantly enhanced mature osteoclasts survival which accompanied by reduction in TUNEL-positive nuclei and PARP cleavage. These results may provide another line of evidence the CTGF mediated prolonged osteoclast survival and subsequent increased bone resorption in the periodontitis patients.

Roles of ginsenosides in inflammasome activation

  • Yi, Young-Su
    • Journal of Ginseng Research
    • /
    • v.43 no.2
    • /
    • pp.172-178
    • /
    • 2019
  • Inflammation is an innate immune response that protects the body from pathogens, toxins, and other dangers and is initiated by recognizing pathogen-associated molecular patterns or danger-associated molecular patterns by pattern-recognition receptors expressing on or in immune cells. Intracellular pattern-recognition receptors, including nucleotide-binding oligomerization domain-like receptors (NLRs), absent in melanoma 2, and cysteine aspartate-specific protease (caspase)-4/5/11 recognize various pathogen-associated molecular patterns and danger-associated molecular patterns and assemble protein complexes called "inflammasomes." These complexes induce inflammatory responses by activating a downstream effector, caspase-1, leading to gasdermin D-mediated pyroptosis and the secretion of proinflammatory cytokines, such as interleukin $(IL)-1{\beta}$ and IL-18. Ginsenosides are natural steroid glycosides and triterpene saponins found exclusively in the plant genus Panax. Various ginsenosides have been identified, and their abilities to regulate inflammatory responses have been evaluated. These studies have suggested a link between ginsenosides and inflammasome activation in inflammatory responses. Some types of ginsenosides, including Rh1, Rg3, Rb1, compound K, chikusetsu saponin IVa, Rg5, and Rg1, have been clearly demonstrated to inhibit inflammatory responses by suppressing the activation of various inflammasomes, including the NLRP3, NLRP1, and absent in melanoma 2 inflammasomes. Ginsenosides have also been shown to inhibit caspase-1 and to decrease the expression of $IL-1{\beta}$ and IL-18. Given this body of evidence, the functional relationship between ginsenosides and inflammasome activation provides new insight into the understanding of the molecular mechanisms of ginsenoside-mediated antiinflammatory actions. This relationship also has applications regarding the development of antiinflammatory remedies by ginsenoside-mediated targeting of inflammasomes, which could be used to prevent and treat inflammatory diseases.

Recent progress in selective bioconjugation

  • Subramani Rajkumar;Abhinav Bhise;Kondapa Naidu Bobba;Jeongsoo Yoo
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.6 no.2
    • /
    • pp.146-154
    • /
    • 2020
  • Selective installation of proteins using chemical reagents is important for the development of potential biomaterials for the treatment of human diseases. However, modification in a chemo- and regioselective manner under physiological conditions is a great challenge due to the presence of multiple reactive centers in the protein. Currently, the majority of conjugations are limited to lysine (Lys)- and cysteine (Cys)-selective reagents. Thus, they have been extensively studied. Apart from Lys and Cys, widespread site selectivity has been recently achieved through most of the 20 naturally occurring amino acid-bearing reactive functional groups. Consequently, this review focused on several recent achievements in site-selective modification of the rarest amino acid backbones (e.g., methionine, serine, glutamic acid, and tyrosine).

Genome-Wide Comprehensive Analysis of the GASA Gene Family in Peanut (Arachis hypogaea L.)

  • Rizwana B.Syed Nabi;Eunyoung Oh;Sungup Kim;Kwang-Soo Cho;Myoung Hee Lee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.231-231
    • /
    • 2022
  • The GASA protein (Gibberellic acid-stimulated Arabidopsis) are family of small cysteine-rich peptides found in plants. These GASA gene family mainly involved in biotic/abiotic stress responses and plant development. Despite being present in a wide plant species, their action and functions still remain unclear. In this study, using the in-silico analysis method we identified 41 GASA genes in peanuts (Arachis hypogaea L.). Based on the phylogenetic analysis 41 GASA genes are classified in the four major clusters and subclades. Mainly, clusters IV and III comprise the majority of GASA genes 15 and 11 genes respectively, followed by cluster I and cluster II with 9 and 6 genes respectively. Additionally, based on in-silico analysis we predicted the post-transcriptional and post-translational changes of GASA proteins under abiotic stresses such as drought and salt stress would aid our understanding of the regulatory mechanisms. Hence, a further study is planned to evaluate the expression of these GASA genes under stress in different plant tissues to elucidate the possible functional role of GASA genes in peanut plants. These findings might offer insightful data for peanut advancement.

  • PDF

Angiotensin Converting Enzyme Inhibitory Activity in Enzymatic Hydrolysates of Anchovy Muscle Protein (멸치육 효소 가수분해물의 Angiotensin 전환효소 저해작용)

  • LEE Tae-Gee;PARK Young-Beom;PARK Douck-Choun;YEUM Dong-Min;KIM In-Soo;GU Yeun-Suk;PARK Young-Ho;KIM Seon-Bong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.31 no.6
    • /
    • pp.875-881
    • /
    • 1998
  • To develop functional food material with angiotensin converting enzyme (ACE) inhibitory peptides, muscle protein of anchovy, Engraulis japonica was hydrolyzed during 48 hrs by digestive pretenses such as pepsin, trypsin, $\alpha$-chymotrypsin, and commercial proteases such as papain, bromelain, complex enzyme, Elavourzyme, Novozym, Neutrase, Protamex and Alcalase. The only $50\%$ ethanol soluble hydrolysates were tested for inhibitory activity against ACE and yield of $50\%$ ethanol soluble peptide-nitrogen ($ESPN_{50}$). ACE inhibition effects and yield of $ESPN_{50}$ occurred as hydrolysis time increased to 8 hrs, Among those pretenses tested, hydrolysates by Alcalase and $\alpha$-chymohypsin had greater ACE inhibitory activity (80 and $74\%$, reipectively) with eletated levels of $ESPN_{50}$ (48 and 58 mg/ml, respectively), while Protamex hydrolysates had greater ACE inhibitory activities ($73\%$) with reduced levels of $ESPN_{50}$ (7.2mg/ml) than others. Amino acid compositions of $50\%$ ethanol solubles obtained from those hydrolysates were rich in glutamic acid, aspartic acid, cysteine and leucine.

  • PDF

Biological Activities of Yellow Garlic Extract (황마늘 추출물의 생리활성)

  • Kang, Jae Ran;Hwang, Cho Rong;Sim, Hye Jin;Kang, Min Jung;Kang, Sang Tae;Shin, Jung Hye
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.7
    • /
    • pp.983-992
    • /
    • 2015
  • This study investigated the quality characteristics and biological activities, such as antioxidant, whitening, anti-diabetes, and anti-inflammatory activities, of yellow garlic, by simplify processing time and manufacturing process compared with black garlic. Extracts were prepared various ratios of water and ethanol solvent [water : ethanol (v/v)=100:0, 70:30, 50:50, 30:70, 0:100] from yellow garlic. Alliin content of yellow garlic showed no difference compared with fresh garlic, whereas S-allyl cysteine content of yellow garlic was higher than that of fresh garlic. Alliin content of yellow garlic extracts increased in an ethanol concentration-dependent manner. Total phenol and flavonoid contents were highest in 100% ethanol extract. DPPH and ABTS radical scavenging abilities did not show significant differences among 0~70% ethanol extracts, whereas 100% ethanol extract showed the highest contents of 93.45% and 91.46%, respectively. Tyrosinase and ${\alpha}$-glucosidase inhibitory activities were also highest in 100% ethanol extract, but did not show significant differences among the extract solvents. Water and ethanol extracts from yellow garlic showed anti-inflammatory effects by modulating production of NO and cytokines at a concentration of $100{\mu}g/mL$. We suggest that yellow garlic has antioxidant, whitening, anti-diabetes, and anti-inflammatory activities and can be used as a functional material similar to black garlic.

Inhibitory Effects of Deer Antler Herbal-Acupuncture Solution on Cathepsin S and L Activity in RA Model Mice

  • Ahn, Hyung-Jun;Yoon, Jong-Hwa;Kim, Kyung-Ho;Lee, Seung-Deok;Kim, Kap-Sung
    • Journal of Acupuncture Research
    • /
    • v.22 no.2
    • /
    • pp.71-81
    • /
    • 2005
  • Objective : Dear antler (Cervus korean TEMMINCK var. mantchuricus Swinhoe) used for traditional immunosuppressive and immuno-activating action. The effect of deer antler herbal-acupuncture(DAH) solution, prepared by water extract method, on cathepsin activities in bone tissues (cartilage and synovial) cells from mouse rheumatoid arthritis (RA) model was studied. The cysteine endoprotease cathepsin mediates degradation of the MHC class II invariant chain (Ii) in human and mouse antigen-presenting cells. The studies described here examine the functional significance of cathepsin inhibition on autoantigen presentation and organ-specific autoimmune diseases in a murine model for RA. Methods : An animal model for RA in BALB/c mice thymectomized 3 days after birth (3d-Tx) was constructed All 3d-Tx BALB/c mice developed autoimmune lesions in the bone tissue cells, starting at 3 weeks of age, and the disease mediated by CD4+ T cells was chronic and progressive. Significant inhibitory effects of DAH solution on cathepsin S and L were observed in each organ in a dose-dependent manner. Moreover, we confirmed that cathepsin S and L activity in each organ were clearly inhibited by DAB solution. When we examined the inhibitory effects of DAH solution against autoantigen-specific T cell responses in vitro, in regional lymph node cells, but not in spleens, from model mice, a significant inhibitory effect of DAB solution was observed in a dose-dependent manner. DAH solution do not block T cell proliferation to Con A, indicated that the dose of DAB solution 10 to $20\;{\mu}g/m{\ell}$ was sufficient to inactivate the autoantigen-specific T cell responses in vitro. In vivo therapeutic effects of DAB solution were examined in a murine model for RA, autoantigen-specific (C-II-specific) T cell response were significantly inhibited in LNCs from DAH solution-treated mice. Results : Iinhibition of cathepsin S and L in vivo alters autoantigen presentation and development of organ-specific autoimmunity in RA model. Conclusion : These data identify selective inhibition of cysteine protease cathepsin S and L as a potential therapeutic strategy for autoimmune disease process such RA. Thus, DAH solution will served as a potent anti-inflammatory and anti-arthritic agents for treatment of human RA.

  • PDF

Composition of Buckwheat (Fagopyrum esculentum Moench) Cultivars from Korea (한국산 메밀의 성분)

  • Shim, Tae-Heum;Lee, Heok-Hwa;Lee, Sang-Young;Choi, Yong-Soon
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.6
    • /
    • pp.1259-1266
    • /
    • 1998
  • To clarify the values and varieties of the buckwheats as a dietary source of nutritional and functional components, thirteen different samples of buckwheat were analyzed for this investigation. Six developed seeds were given by RDA, Korea or RDA branch of Kangwondo, and seven land race seeds were collected from a farmhouse. Amino acid analysis showed that glutamate, arginine and asparagine were major amino acids, whereas tryptophan, methionine and cysteine were minor ones of buckwheat. In addition, tryptophan content of buckwheat cultivars from Korea was 195 mg% on average. The content of rutin tended to be higher in developed cultivars than land races. On the other hand, the contents of phytic acid in buckwheats were in the range of 7.0 to 13.6 mg/g. In the tocopherol homologues of the buckwheats analyzed by HPLC, mean ${\gamma}-tocopherol$ contents were 6.16 mg/100 g with the actual range of $4.67{\sim}8.58\;mg/100g$, whereas ${\beta}-form$ was very low or zero. There were a big variations in the iron content of the buckwheats of the minerals. SDS-PAGE showed that total proteins from buckwheats exhibited a relatively similar electrophoretic patterns on the whole. The results show that CV Suwon 1 has good quality, judged from the distribution of the components of buckwheats analyzed.

  • PDF

The Regulation of Stress Responses by Non-tandem CCCH Zinc Finger Genes in Plants (식물에서 non-tandem CCCH zinc finger 그룹 유전자에 의한 스트레스 반응 조절)

  • Hye-Yeon Seok;Md Bayzid;Swarnali Sarker;Sun-Young Lee;Yong-Hwan Moon
    • Journal of Life Science
    • /
    • v.33 no.11
    • /
    • pp.956-965
    • /
    • 2023
  • In plants, there are many CCCH zinc finger proteins consisting of three cysteine residues and one histidine residue, which bind to zinc ions with finger configuration. CCCH-type zinc finger proteins are divided into tandem CCCH-type zinc finger (TZF) and non-TZF proteins: TZF proteins contain exactly two tandem CCCH-type zinc finger motifs whereas non-TZF proteins have fewer or greater than two CCCH-type zinc finger motifs. The functions of TZF genes, especially plant-specific RR-TZF genes, have been well studied in several plants, whereas the functional roles of non-TZF genes have not been adequately researched compared to TZF genes. Many non-TZF genes have been identified as being involved in the responses to biotic and abiotic stresses, such as pathogen, high salt, drought, cold, heat, and oxidative stresses. Some non-TZF proteins bind to RNA and are involved in the post-transcriptional regulation of stress-responsive genes in the cytoplasm. In addition, other non-TZF proteins act as transcriptional activators or repressors that regulate the expression of stress-responsive genes in the nucleus. Despite these studies, stress signal transduction and upstream and downstream genes of non-TZF genes have not been sufficiently researched, suggesting that additional studies of the functions of non-TZF genes' functions in plants' stress responses are needed. In this review, we describe non-TZF genes involved in biotic abiotic stress responses in plants and their molecular functions.