
Short Review

Roles of ginsenosides in inflammasome activation

Young-Su Yi*

Department of Pharmaceutical Engineering, Cheongju University, Cheongju, Republic of Korea

a r t i c l e i n f o

Article history:
Received 14 October 2017
Accepted 16 November 2017
Available online 9 December 2017

Keywords:
Antiinflammatory
Ginsenosides
Inflammasomes
Inflammation

a b s t r a c t

Inflammation is an innate immune response that protects the body from pathogens, toxins, and other
dangers and is initiated by recognizing pathogen-associated molecular patterns or danger-associated
molecular patterns by pattern-recognition receptors expressing on or in immune cells. Intracellular
pattern-recognition receptors, including nucleotide-binding oligomerization domain-like receptors
(NLRs), absent in melanoma 2, and cysteine aspartateespecific protease (caspase)-4/5/11 recognize
various pathogen-associated molecular patterns and danger-associated molecular patterns and assemble
protein complexes called “inflammasomes.” These complexes induce inflammatory responses by acti-
vating a downstream effector, caspase-1, leading to gasdermin D emediated pyroptosis and the secretion
of proinflammatory cytokines, such as interleukin (IL)-1b and IL-18. Ginsenosides are natural steroid
glycosides and triterpene saponins found exclusively in the plant genus Panax. Various ginsenosides have
been identified, and their abilities to regulate inflammatory responses have been evaluated. These
studies have suggested a link between ginsenosides and inflammasome activation in inflammatory re-
sponses. Some types of ginsenosides, including Rh1, Rg3, Rb1, compound K, chikusetsu saponin IVa, Rg5,
and Rg1, have been clearly demonstrated to inhibit inflammatory responses by suppressing the activation
of various inflammasomes, including the NLRP3, NLRP1, and absent in melanoma 2 inflammasomes.
Ginsenosides have also been shown to inhibit caspase-1 and to decrease the expression of IL-1b and IL-
18. Given this body of evidence, the functional relationship between ginsenosides and inflammasome
activation provides new insight into the understanding of the molecular mechanisms of ginsenoside-
mediated antiinflammatory actions. This relationship also has applications regarding the development
of antiinflammatory remedies by ginsenoside-mediated targeting of inflammasomes, which could be
used to prevent and treat inflammatory diseases.
� 2017 The Korean Society of Ginseng, Published by Elsevier Korea LLC. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Inflammation is an immune response mainly mediated by
innate immune cells, such as macrophages. This response protects
the body from invading pathogens and environmental dangers and
is characterized by redness, swelling, pain, heat, and loss of func-
tion [1e4]. Inflammatory responses are initiated by the interaction
of pathogen-associated molecular patterns (PAMPs) and danger-
associated molecular patterns (DAMPs) with pattern-recognition
receptors (PRRs) expressed on innate immune cells. These recog-
nition molecules include toll-like receptors, C-type lectin receptors,
and scavenger receptors. They also include PRRs expressed within
immune cells, such as nucleotide-binding oligomerization
domainelike receptors (NLRs), leucine-rich repeats (LRRs), absent
in melanoma 2 (AIM2), retinoic acideinducible gene Ielike

receptors, and cysteine aspartateespecific protease (caspase)-4/5/
11 [5e14]. After PAMPs and DAMPs bind to extracellular PRRs
(especially toll-like receptors), intracellular signaling molecules in
inflammatory signaling pathways such as the nuclear factor-kappa
B, activator protein-1, and interferon-regulatory factor pathways
are activated. This activation cascade leads to the expression of
inflammatory genes and proinflammatory cytokines, as well as the
production of various inflammatory mediators [12,15e17]. Inflam-
matory responses are also induced by the activation of intracellular
PRRs; these intracellular PRR-mediated inflammatory responses
differ from those mediated by intracellular PRRs. On distinct
stimulation, intracellular PRRs such as NLRs, AIM2, and caspase-4/
5/11 assemble protein complexes called “inflammasomes” [10,18].
During the inflammatory responses, inflammasomes are activated
and subsequently activate inflammatory caspase-1, resulting in
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gasdermin D (GSDMD)emediated pyroptosis. This type of pyrop-
tosis is an inflammatory form of programmed cell death. Caspase-1
activation also results in the secretion of proinflammatory cyto-
kines, including interleukin (IL)-1b and IL-18 [8e11,18,19].

Ginseng is a perennial plant in the genus Panax that is found in
East Asia and North America. Ginseng has been traditionally used as
an herbalmedicine to alleviate diseases and their symptoms such as
diabetes, hypertension, gastric ulcer, neuronal disease, pain,
inflammation, and cancer [20e25]. Ginsenosides, which are steroi-
dal triterpenoid saponins, are the main active compounds found in
ginseng. These compounds are considered critical constituents for
the activities of ginseng against various disease symptoms,
including diabetes, cardiovascular disease, stress, cancer, immu-
nostimulation, and inflammation [26e31]. Although many studies
have reported that different types of ginsenosides have antiin-
flammatory activity, the suppressive roles of ginsenosides in in-
flammatory responses and the underlying molecular mechanisms
thereof are not fully understood. Moreover, recent studies have
started to focus on the regulatory roles of ginsenosides with respect
to the activation of inflammasomes during inflammatory responses.

The present review provides a general introduction to inflam-
masomes, including their types, structures, and activation. It also
discusses recent progress on the regulatory roles of ginsenosides
with respect to inflammasome activation in inflammatory re-
sponses. The aim of this review is to promote better understanding
of the functional relationship between ginsenosides and inflam-
masome activation and also to provide insight into the develop-
ment of inflammasome-targeting drugs containing ginsenosides,
with the goal that such drugs could be used to prevent and treat
various inflammatory diseases.

2. Types of inflammasomes: structure and activation

Inflammasomes are protein complexes that trigger inflamma-
tory responses in macrophages by the proteolytic activation of
caspase-1, an inflammatory caspase. This process results in
GSDMD-mediated pyroptosis and the secretion of IL-1b and IL-18
[8e11,18,19]. On stimulation by different types of PAMPs, DAMPs,
and other molecules, intracellular PRRs are activated and assemble
inflammasome complexes. These complexes can be assembledwith
or without adaptor proteins such as apoptosis-associated speck-like
protein containing caspase recruitment domain (CARD) (ASC) and
pro-caspase-1 [8e11,18]. Inflammasomes are categorized into two

groups, canonical inflammasomes and noncanonical inflamma-
somes. Canonical inflammasomes are protein complexes consisting
of NLRs (e.g., NLRP1, NLRP3, and NLRC4) or non-NLRs (e.g., AIM2,
adaptor protein, ASC, and pro-caspase-1) [8,9,18,19]. In contrast,
noncanonical inflammasomes are protein complexes consisting of
inflammatory caspases such as caspase-11 in mice or caspase-4 and
caspase-5 in humans and intracellular lipopolysaccharide (LPS)
[10,11]. While canonical and noncanonical inflammasomes
assemble complexes after activation by different stimuli, they work
in a similar way during macrophage-mediated inflammatory re-
sponses by activating caspase-1. This activation leads to GSDMD-
mediated pyroptosis and the secretion of IL-1b and IL-18 [8e11,18].

Canonical inflammasomes are classified based on the names of
their cognate PRRs. NLRP1 inflammasomes consist of NLRP1 and
pro-caspase-1 (Fig. 1A) [8,9,18,19]. NLRP1 was identified as the first
member of the NLR family [32] and has an N-terminal pyrin domain
(PYD), a nucleotide-binding and oligomerization domain (NACHT),
LRRs, a functional-to-find domain, and a C-terminal CARD (Fig. 1A).
Whereas only one form of NLRP1 has been identified in humans,
three isoforms (NLRP1A, NLRP1B, and NLRP1C) have been identified
inmice. TheN-terminal PYDmotif present inhumanNLRP1 is absent
in the mouse NLRP1 isoforms (Fig. 1A) [18]. On stimulationwith the
Bacillus anthracis toxin,NLRP1 inflammasomes are assembledby the
direct interaction between NLRP1 and pro-caspase-1 through their
CARDmotifs (Fig.1A) [33]. NLRP1was shown tohave a critical role in
preventing pyroptosis and the secretion of IL-1b and IL-18 from
macrophages from Nlrp1 knockout mice [33,34].

NLRP3 inflammasomes consist of NLRP3, ASC, and pro-caspase-
1 (Fig. 1B) [8,9,18]. NLRP3 has an N-terminal PYD motif, a NACHT
domain, and C-terminal LRRs (Fig. 1B). NLRP3 is activated by a va-
riety of agents such as bacteria, protozoans, viruses, fungi, pore-
generating toxins, hyaluronan, extracellular adenosine triphos-
phate (ATP), nucleic acid hybrids, b-amyloids, uric acid, alum, and
silica. On stimulation by these agents, NLRP3 inflammasomes are
assembled by the direct interaction between NLRP3 and ASC
through their PYD motifs, leading to an interaction with pro-
caspase-1 through their CARD motifs (Fig. 1B) [19,35].

Similarly, NLRC4 inflammasomes consist of NLRC4 and pro-
caspase-1. NLRC4 has an N-terminal CARD domain, a NACHT
domain, and C-terminal LRRs (Fig. 1C). The structure of NLRC4 is
similar to that of NLRP3, but unlike NLRP3, it has a CARD motif
instead of a PYD motif at the N-terminus (Fig. 1B and 1C). NLRC4 is
activated by bacterial components such as bacterial flagellin and
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Fig. 1. Structures of canonical inflammasomes. (A) NLRP1 directly binds to pro-caspase-1 through their CARD motifs without the help of the adaptor molecule ASC. The N-
terminal CARD motif is absent in the mouse NLRP1 isoforms. (B) Binding of NLRP3 to pro-caspase-1 is mediated by ASC. NLRP3 directly binds to ASC through their PYD motifs,
whereas pro-caspase-1 directly binds to ASC through their CARD motifs. (C) NLRC4 directly binds to pro-caspase-1 through their CARD motifs without the help of the adaptor
molecule ASC. (D) The binding of AIM2 to pro-caspase-1 is mediated by ASC. AIM2 directly binds to ASC through their PYD motifs, whereas pro-caspase-1 directly binds to ASC
through their CARD motifs.
AIM2, absent in melanoma 2; ASC, apoptosis-associated speck-like protein containing caspase recruitment domain; CARD, caspase recruit domain; caspase, cysteine aspartatee
specific protease; FIIND, function-to-find domain; NACHT, nucleotide binding and oligomerization domain; NLR, nucleotide-binding oligomerization domain-like receptor; LRR,
leucine-rich repeat; PYD, pyrin domain.
*Autocatalytic cleavage.
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bacterial needle subunits [36e41]. On stimulation by these ligands,
NLRC4 inflammasomes are assembled by the direct interaction of
NLRC4 and pro-caspase-1 through their CARD motifs (Fig. 1C).

AIM2 is a member of the p200 protein family and was initially
identified as a direct sensor of intracellular double-stranded nucleic
acids derived from pathogens. This sensor is another type of
intracellular PRR that does not belong to an NLR inflammasome
family [42]. AIM2 inflammasomes consist of AIM2, ASC, and pro-
caspase-1; AIM2 has an N-terminal PYD motif and a C-terminal
hematopoietic interferon-inducible nuclear protein domain
(Fig. 1D). AIM2 is activated by intracellular double-stranded nucleic
acids of various pathogens, such as Francisella tularensis, cyto-
megalovirus, and vaccinia virus. In response to these ligands, AIM2
inflammasomes are assembled in a similar manner as NLRP3
inflammasomes, i.e., direct interaction of AIM2 and ASC through
their PYD motifs, leading to a subsequent interaction with pro-
caspase-1 through their CARD motifs (Fig. 1D) [43e45].

Noncanonical inflammasomes were identified by the unex-
pected result that caspase-1 activation, pyroptosis, and secretion of
IL-1b and IL-18 were not induced in macrophages derived from the
129S6 mouse strain. These mice express nonfunctional caspase-11
due to a polymorphism in the caspase-11 gene locus [46]. This
result suggested that caspase-11 forms another type of inflamma-
some that is distinct from canonical inflammasomes, hence its
classification as a noncanonical inflammasome. Caspase-11
inflammasomes are assembled by direct binding of caspase-11 to
a lipid A moiety of intracellular LPS derived from gram (�) bacteria,
such as Escherichia coli, Legionella pneumophilia, Citrobacter roden-
tium, Salmonella typhimurium, Shigella flexneri, and Burkholderia
spp. [10,11,47e54], through its CARDmotif (Fig. 2A) [55]. Caspase-4

and caspase-5 are considered to be human homologs of mouse
caspase-11 because they also bind directly to a lipid A moiety of
gram (�) bacteriaederived intracellular LPS through their CARD
motifs (Fig. 2A) [10,55e57]. After caspase-4/5/11 binds to intra-
cellular LPS, it is subsequently activated by forming an oligomer
complex through homologous interactions of its CARD motifs
(Fig. 2B) [10,11,58].

Therefore, although different types of intracellular PRRs and
their cognate ligands are involved, activation of both canonical and
noncanonical inflammasomes results in the activation of caspase-1,
a downstream effector molecule. This activation leads to GSDMD-
mediated pyroptosis and the secretion of IL-1b and IL-18 during
macrophage-mediated inflammatory responses. The inflamma-
somes discussed in this section are summarized in Table 1.

3. Roles of ginsenosides in inflammasome activation

Ginseng is a slow-growing perennial plant cultivated in North-
east America and East Asia. Ginseng has been used as an herbal
medicine for thousands of years to ameliorate a variety of disease
conditions, including fatigue, depression, aging, hypertension,
gastric ulcer, stress, diabetes, and cancer [20e22,59]. In addition to
its effects on these disease conditions, the effects of ginseng on
inflammatory responses have been extensively explored [25,60,61].
An inflammatory response mediated mainly by myeloid immune
cells (such as macrophages) is a host defensive innate immune
response against invading pathogens. A number of studies have
reported that inflammasomes play critical roles during inflamma-
tory responses. Therefore, the roles of ginseng and ginseng-derived
components in the activation of inflammasomes during
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Fig. 2. Structures of noncanonical inflammasomes. (A) Mouse caspase-11 and human caspase-4/5 directly bind through their CARD motifs and the lipid A moieties of intracellular
LPS derived from Gram (�) bacteria. (B) Caspase-4/5/11 and LPS complexes are activated by oligomerization. Oligomerization involves binding of the caspase-4/5/11 molecules
through their CARD motifs.
CARD, caspase recruit domain; caspase, cysteine aspartateespecific protease; LPS, lipopolysaccharide.
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inflammatory responses have been investigated. These ginseng-
derived components include various types of ginsenosides, which
are pharmacologically active glycosides found in ginseng.

Korean Red Ginseng is a dark red steam-processed ginseng
which has been reported to exhibit various biological activities,
such as antiinflammatory, antioxidative, immune-enhancing, and
anticancer activities [62e65]. Korean Red Ginseng has also been
shown to affect the activation of inflammasomes during inflam-
matory responses. For instance, Kim et al prepared Korean Red
Ginseng extract (RGE) and demonstrated its effects on the activa-
tion of inflammasomes both in vitro and in vivo, i.e., in human
macrophages and in mice. Moreover, RGE markedly suppressed the
activation of NLRP3 and AIM2 inflammasomes, resulting in the
suppression of macrophage pyroptosis and the maturation/secre-
tion of IL-1b in in vitro and in vivo models [66]. Further studies
aimed to identify the compounds in RGE that are responsible for
this inhibition of inflammasome activation; two ginsenosides, Rh1
(Fig. 3A) and Rg3 (Fig. 3B), were found to inhibit the secretion of IL-
1b bymacrophages in a dose-dependent manner [66]. These results
suggest that the ginsenosides Rh1 and Rg3, which are found in RGE,
play a critical role in preventing pyroptosis and the maturation/
secretion of IL-1b. These effects are mediated by suppressing the
activation of the NLRP3 and AIM2 inflammasomes during
macrophage-mediated inflammatory responses.

Rg3 is a tetracyclic triterpenoid saponin which is abundant in
red ginseng [67]. Studies have investigated the molecular mecha-
nism by which the ginsenoside Rg3 inhibits inflammasome acti-
vation in macrophages. Rg3 was shown to effectively decrease the
production of nitric oxide (NO) and reactive oxygen species and to
downregulate the expression of inducible nitric oxide synthase.
These effects lead to the inhibition of NLRP3 inflammasome acti-
vation by blocking NO-induced NLRP3 S-nitrosylation in macro-
phages [68]. Moreover, Rg3 was shown to attenuate death due to
LPS-induced endotoxic shock in mice by decreasing apoptotic cell

death in the spleen and inducible nitric oxide synthase
expression and NO production in the spleen and the liver [68]. This
study suggests that ginsenoside Rg3, a major bioactive constituent
of ginseng, could act as an antiinflammatory therapeutic agent for
the treatment of inflammatory diseases (including sepsis) by
deactivating inflammasomes during inflammatory responses.

The inhibitory effects of ginsenosides on inflammasome acti-
vation have also been investigated during inflammatory responses
in adipose tissues. Exposure to chronic cellular stresses or meta-
bolic disease induces endoplasmic reticulum stress and initiates
inflammatory responses in specialized tissues, including adipose
tissue [69,70]. Rb1 (Fig. 3C) and compound K (Fig. 3D) are natural
tetracyclic triterpene saponins found exclusively in ginseng [71].
Chen et al reported that two ginsenosides, Rb1 and compound K,
suppressed the activation of NLRP3 inflammasomes in adipocytes.
This suppression resulted in the inhibition of IL-1b maturation and
IL-6 secretion [72]. Moreover, the two ginsenosides were shown to
ameliorate insulin resistance, which is characterized by impaired
insulin signaling [72]. This impaired signaling is induced by in-
flammatory responses in adipocytes [73].

Another ginseng compound, chikusetsu saponin IVa (CS IVa)
(Fig. 3E), was also shown to suppress inflammasome activation in
inflammatory adipose tissue from high-fat diet (HFD)efed mice. CS
IVa is an oleanane-type pentacyclic triterpene saponin found in
some medicinal plants, including ginseng and Aralia taibaiensis
[74,75]. CS IVa has been shown to significantly reduce inflamma-
tory responses and the expression of NLRP3 inflammasome com-
ponents (e.g., IL-1b, caspase-1, NLRP3, and ASC) in adipose tissue
isolated from HFD-fed mice [76]. Moreover, CS IVa was shown to
inhibit the activation of NLRP3 inflammasomes and NLRP3-
mediated formation of ASC pyroptosomes, leading to suppression
of LPS-induced pyroptosis in macrophages [76].

The effect of Rg5 (Fig. 3F) on inflammasome activation in adi-
pose tissue has also been investigated. Rg5 is a tetracyclic
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A

Fig. 3. Chemical structures of ginsenosides. (A) Rh1. (B) Rg3. (C) Rb1. (D) Compound K. (E) CS IVa. (F) Rg5. (G) Rg1.
CS IVa, chikusetsu saponin IVa.
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triterpenoid saponin and a main, yet rare, saponin generated dur-
ing ginseng steaming [77]. Rg5 has been shown to suppress the
activation of NLRP3 inflammasomes and to suppress lipolysis in
adipose tissue of HFD-fed mice, thereby inhibiting adipose
dysfunction and insulin resistance [78].

A recent study explored the suppressive effect of a ginsenoside
on inflammasome activation during atherosclerosis pathogenesis.
Atherosclerosis is an inflammatory disease in which plaque accu-
mulates inside the arteries. Zhou et al reported that compound K
prevents the accumulation of atherosclerotic plaque and sup-
presses inflammasome activity by reducing the protein levels of
NLRP3, mature IL-1b, and caspase-1 in the atherosclerotic lesions of
ApoE�/� mice [79]. Moreover, compound K was shown to signifi-
cantly decrease the protein levels of NLRP3 inflammasome com-
ponents (e.g., NLRP3, mature IL-1b, and caspase-1) in macrophages
isolated from ApoE�/� mice [79].

Another recent study examined the suppressive effect of Rg1
(Fig. 3G) on inflammasome activation in the generation and pro-
gression of Alzheimer’s disease, a chronic neurodegenerative dis-
ease, using a mouse model. Rg1 is a tetracyclic triterpenoid saponin
and a major bioactive ingredient of Panax ginseng [80]. Rg1 exerted
neuroprotective activity against glucocorticoid-induced neuro-
inflammation damage in the brains of glucocorticoid-injectedmice.
Specifically, Rg1 suppressed behavioral defects and alleviated
neuronal degeneration [81]. Interestingly, this suppressive effect of
Rg1 against neuroinflammatory damagewas achieved by inhibiting
NLRP1 inflammasome activation. Rg1 significantly downregulated
the expression of NLRP1 inflammasome components (e.g., ASC and
pro-caspase-1) and inflammasome-specific proinflammatory cy-
tokines (e.g., IL-1b and IL-18) in the hippocampus of glucocorticoid-
injected mice [81].

Taken together, these results strongly suggest that ginseng and
various ginseng-derived ginsenosides (e.g., Rh1, Rg3, CS IVa, Rg5,
Rb1, compound K, and Rg1) play a protective role during the
pathogenesis of various inflammatory diseases by inhibiting the
activation of inflammasomes and their downstream effector com-
ponents, as summarized in Table 2.

4. Conclusion

Inflammation is a host defense mechanism mediated by innate
immune cells. This mechanism involves the recognition of PAMPs
and DAMPs by PRRs, which are expressed on the surface of in-
flammatory cells or intracellularly within the inflammatory cells. A
hallmark of inflammatory responses is the activation of inflam-
masomes, which are intracellular protein complexes. On stimula-
tion by different types of ligands, intracellular PRRs such as NLRs

and AIM2 are activated. This activation results in the assembly of
canonical inflammasome complexes, which consist of an intracel-
lular PRR and pro-caspase-1. These complexes may or may not
contain the adaptormolecule ASC. Intracellular caspases 4/5/11 also
directly recognize intracellular LPS derived from gram (�) bacteria
and are activated by assembling noncanonical inflammasome
complexes, which consist of caspase-4/5/11 and LPS. The activation
of inflammasomes subsequently activates their downstream
effector, caspase-1, resulting in GSDMD-mediated pyroptosis and
the secretion of proinflammatory cytokines such as IL-1b and IL-18.
Many types of ginsenosides, steroid glycosides, and triterpene sa-
ponins have been identified as active components that exhibit
various biological functions, including antiinflammatory actions.
Moreover, some types of ginsenosides have been reported to have
antiinflammatory activities by suppressing the activation of several
types of inflammasomes (e.g., NLRP3, NLRP1, and AIM2 inflam-
masomes) during inflammatory responses. Moreover, these ginse-
nosides have been shown to effectively inhibit the activation of
caspase-1 and to reduce the expression of IL-1b and IL-18. Given
the results discussed in the present review, ginsenosides play a
critical role in suppressing the activation of various inflammasomes

Table 1
Structures and activation of inflammasomes

Groups Classes Motifs Components Ligand(s) Ref.

Canonical
inflammasomes

NLRP1 CARD, FIIND,
LRRs, NACHT,
and PYD

NLRP1 and
pro-caspase-1

Bacillus anthracis toxin [1e7]

NLRP3 LRRs, NACHT,
and PYD

NLRP3, ASC, and
pro-caspase-1

Bacteria, protozoans, viruses, fungi, pore-generating
toxins, hyaluronan, extracellular ATP, nucleic
acid hybrids, b-amyloids, uric acid, alum, and silica

[1e4,8]

NLRC4 LRRs, NACHT,
and CARD

NLRC4 and
pro-caspase-1

Bacterial flagellin and bacterial needle subunits [9e14]

AIM2 PYD and
NIH200

AIM2, ASC, and
pro-caspase-1

Intracellular double-stranded nucleic acids [15e18]

Noncanonical
inflammasomes

Caspase-4/5/11 CARD, p20,
and p10

Caspase-4/5/11
and LPS

Intracellular LPS [19e28]

AIM2, absent in melanoma 2; ASC, apoptosis-associated speck-like protein containing caspase recruitment domain; CARD, caspase recruit domain; Caspase, cysteine
aspartateespecific protease; FIIND, function-to-find domain; LPS, lipopolysaccharide; LRR, leucine-rich repeat; NACHT, nucleotide binding and oligomerization domain;
NLR, nucleotide-binding oligomerization domain-like receptor; PYD, pyrin domain.

Table 2
Roles of ginsenosides in the activation of inflammasomes

Ginsenosides Targets Mode of
actions

Models Ref.

Rh1 NLRP3 & AIM2 Suppressor Human and mouse
macrophages
Mice

[29]

Rg3 NLRP3 & AIM2 Suppressor Human and mouse
macrophages
Mice

[29]

NLRP3 Suppressor Mouse macrophages
Human keratinocytes
Mice

[29,30]

Rb1 NLRP3 Suppressor Mouse adipocytes
Mouse adipose
tissues

[31]

Compound K NLRP3 Suppressor Mouse adipocytes
Mouse adipose
tissues

[31,32]

Suppressor Mouse macrophages
Mice

[31,32]

CS IVa NLRP3 Suppressor Mouse adipose
tissues
Mouse macrophages

[33]

Rg5 NLRP3 Suppressor Mouse adipocytes [34]
Rg1 NLRP1 Suppressor Mice [35]

AIM2, absent in melanoma 2; CS IVa, chikusetsu saponin IVa; NLR, nucleotide-
binding oligomerization domain-like receptor.
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during inflammatory responses. Overall, these results strongly
suggest that targeting inflammasomes using ginsenoside-
containing therapeutics could be a novel and promising strategy
for preventing and treating inflammatory diseases.
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Abbreviations

PAMP Pathogen-associated molecular pattern
DAMP Danger-associated molecular pattern
PRR Pattern-recognition receptor
NLR Nucleotide-binding oligomerization domain-like receptor
AIM2 Absent in melanoma 2
Caspase Cysteine aspartateespecific protease
GSDMD Gasdermin D
ASC Apoptosis-associated speck-like protein containing CARD
LPS Lipopolysaccharide
PYD N-terminal pyrin domain
NACHT Nucleotide-binding and oligomerization domain
LRR Leucine-rich repeat
FIIND Functional-to-find domain
CARD C-terminal caspase recruit domain
HIN Hematopoietic interferon-inducible nuclear protein
IL Interleukin
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