DOI QR코드

DOI QR Code

Recent progress in selective bioconjugation

  • Subramani Rajkumar (Department of Molecular Medicine, Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University) ;
  • Abhinav Bhise (Department of Molecular Medicine, Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University) ;
  • Kondapa Naidu Bobba (Department of Molecular Medicine, Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University) ;
  • Jeongsoo Yoo (Department of Molecular Medicine, Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University)
  • Received : 2020.12.15
  • Accepted : 2020.12.29
  • Published : 2020.12.31

Abstract

Selective installation of proteins using chemical reagents is important for the development of potential biomaterials for the treatment of human diseases. However, modification in a chemo- and regioselective manner under physiological conditions is a great challenge due to the presence of multiple reactive centers in the protein. Currently, the majority of conjugations are limited to lysine (Lys)- and cysteine (Cys)-selective reagents. Thus, they have been extensively studied. Apart from Lys and Cys, widespread site selectivity has been recently achieved through most of the 20 naturally occurring amino acid-bearing reactive functional groups. Consequently, this review focused on several recent achievements in site-selective modification of the rarest amino acid backbones (e.g., methionine, serine, glutamic acid, and tyrosine).

Keywords

Acknowledgement

This work was supported by an R&D program through the National Research Foundation of Korea funded by the Ministry of Science, ICT & Future Planning (No. 2019R1A2C2084313, 2019R1I1A1A01041141, 2019H1D3A1A01102643, 2020M2D8A3094031 and 2020R1C1C1008442).

References

  1. Krall N, Da Cruz FP, Boutureira O, Bernardes GJ. Site-selective protein-modification chemistry for basic biology and drug development. Nat Chem 2016;8:103-113.
  2. Hermanson TG. Bioconjugate Techniques. 3rd ed. Elsevier: Academic Press; 2008. p. 1-258.
  3. Koniev O, Wagner A. Developments and recent advancements in the field of endogenous amino acid selective bond forming reactions for bioconjugation. Chem Soc Rev 2015;44:5495-5551.
  4. Sletten EM, Bertozzi CR. Bioorthogonal chemistry: Fishing for selectivity in a sea of functionality. Angew Chem Int Ed 2009;48:6974-6998.
  5. Wright TH, Bower BJ, Chalker JM, Bernardes GJ, Wiewiora R, Ng WL, Raj R, Faulkner S, Vallee MR, Phanumartwiwath A, Coleman OD, Thezenas ML, Khan M, Galan SR, Lercher L, Schombs MW, Gerstberger S, Palm-Espling ME, Baldwin AJ, Kessler BM, Claridge TD, Mohammed S, Davis BG. Posttranslational mutagenesis: A chemical strategy for exploring protein side-chain diversity. Science 2016;354:aag1465.
  6. Gunnoo SB, Madder A. Chemical protein modification through cysteine. ChemBioChem 2016;17:529-553.
  7. Boutureira O, Bernardes GJ. Advances in chemical protein modification. Chem Rev 2015;115:2174-2195.
  8. Liu H, Li X. Serine/Threonine Ligation: Origin, Mechanistic Aspects, and Applications. Acc Chem Res 2018;51:1643-1655.
  9. Westheimer FH. Why nature chose phosphates. Science 1987;235:1173-1178.
  10. Knouse KW, deGruyter JN, Schmidt MA, Zheng B, Vantourout JC, Kingston C, Mercer SE, Mcdonald IM, Olson RE, Zhu Y, Hang C, Zhu J, Yuan C, Wang Q, Park P, Eastgate MD, Baran PS. Unlocking P(V): Reagents for chiral phosphorothioate synthesis. Science 2018;361:1234-1238.
  11. Vantourout JC, Adusumalli SR, Knouse KW, Flood DT, Ramirez A, Padial NM, Istrate A, Maziarz K, deGruyter JN, Merchant RR, Qiao JX, Schmidt MA, Deery MJ, Eastgate MD, Dawson PE, Bernardes GJL, Baran PS. Serine-selective bioconjugation. J Am Chem Soc 2020;142:17236-17242.
  12. Lin S, Yang X, Jia S, Weeks AM, Hornsby M, Lee PS, Nichiporuk RV, Iavarone AT, Wells JA, Toste FD, Chang CJ. Redox-based reagents for chemoselective methionine bioconjugation. Science 2017;355:597-602.
  13. Christian AH, Jia S, Cao W, Zhang P, Meza AT, Sigman MS, Chang CJ, Toste FD. A physical organic approach to tuning reagents for selective and stable methionine bioconjugation. J Am Chem Soc 2019;141:12657-12662.
  14. Taylor MT, Nelson JE, Suero MG, Gaunt MJ. A protein functionalization platform based on selective reactions at methionine residues. Nature 2018;562:563-568.
  15. Lin D, Wallace M, Allentoff JA, Donnelly JD, Gomes E, Voronin K, Gong S, Huang CYR, Kim H, Cortes CJ, Bonacorsi JS. Chemoselective methionine bioconjugation: Site-selective fluorine-18 labeling of proteins and peptides. Bioconjug Chem 2020;31:1908-1916.
  16. Donnelly DJ, Smith RA, Morin P, Lipovsek D, Gokemeijer J, Cohen D, Lafont V, Tran T, Cole EL, Wright M, Kim J, Pena A, Kukral D, Dischino DD, Chow P, Gan J, Adelakun O, Wang XT, Cao K, Leung D, Bonacorsi SJ, Hayes W. Synthesis and biologic evaluation of a novel 18F-labeled Adnectin as a PET radioligand for imaging PD-L1 expression. J Nucl Med 2018;59:529-535.
  17. Brosnan JT, Brosnan ME. Glutamate: A truly functional amino acid. Amino Acids 2013;45:413-418.
  18. McGrath NA, Andersen KA, Davis AK, Lomax JE, Raines RT. Diazo compounds for the bioreversible esterification of proteins. Chem Sci 2015;6:752-755.
  19. Zhang X, Wang JH, Tan D, Li Q, Li M, Gong Z, Tang C, Liu Z, Dong MQ, Lei X, Carboxylate-selective chemical crosslinkers for mass spectrometric analysis of protein structures. Anal. Chem. 2018, 90, 1195-1201.
  20. Martin-Gago P, Fansa EK, Winzker M, Murarka S, Janning P, Schultz-Fademrecht C, Baumann M, Wittinghofer A, Waldmann H. Covalent protein labeling at glutamic acids. Cell Chem Biol 2017;24:589-597.e5.
  21. Cheng K, Lee JS, Hao P, Yao SQ, Ding K, Li Z. Tetrazole-based probes for integrated phenotypic screening, affinity-based proteome profiling, and sensitive detection of a cancer biomarker. Angew Chem Int Ed 2017;56:15044-15048.
  22. Ma N, Hu J, Zhang ZM, Liu W, Huang M, Fan Y, Yin X, Wang J, Ding K, Ye W, Li Z. 2H-Azirinebased reagents for chemoselective bioconjugation at carboxyl residues inside live cells. J Am Chem Soc 2020;142:6051-6059.
  23. Ban H, Gavrilyuk J, Barbas CF III. Tyrosine bioconjugation through aqueous ene-type reactions: A click-like reaction for tyrosine. J Am Chem Soc 2010;132:1523-1525.
  24. Ban H, Nagano M, Gavrilyuk J, Hakamata W, Inokuma T, Barbas CF III. Facile and stabile linkages through tyrosine: Bioconjugation strategies with the tyrosine-click reaction. Bioconjug Chem 2013;24:520-532.
  25. Alvarez-Dorta D, Thobie-Gautier C, Croyal M, Bouzelha M, Mevel M, Deniaud D, Boujtita M, Gouin SG. Electrochemically promoted tyrosine-click-chemistry for protein labeling. J Am Chem Soc 2018;140:17120-17126.
  26. Song C, Liu K, Wang Z, Ding B, Wang S, Weng Y, Chiang CW, Lei A. Electrochemical oxidation induced selective tyrosine bioconjugation for the modification of biomolecules. Chem Sci 2019;10:7982-7987.
  27. Sato S, Matsumura M, Kadonosono T, Abe S, Ueno T, Ueda H, Nakamura H. Site-selective protein chemical modification of exposed tyrosine residues using tyrosine click reaction. Bioconjug Chem 2020;31:1417-1424.
  28. Sato S, Nakamura K, Nakamura H. Tyrosine-specific chemical modification with in situ hemin-activated luminol derivatives. ACS Chem Biol 2015;10:2633-2640.
  29. Sato S, Nakamura K, Nakamura H. Horseradish-peroxidase-catalyzed tyrosine click reaction. ChemBioChem 2017;18:475-478.