• Title/Summary/Keyword: Function Analysis Method

Search Result 6,154, Processing Time 0.045 seconds

An Enhanced Function Point Model for Software Size Estimation: Micro-FP Model (소프트웨어 규모산정을 위한 기능점수 개선 Micro-FP 모형의 제안)

  • Ahn, Yeon-S.
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.12
    • /
    • pp.225-232
    • /
    • 2009
  • Function Point Method have been applied to measure software size estimation in industry because it supports to estimate the software's size by user's view not developer's. However, the current function point method has some problems for example complexity's upper limit etc. So, In this paper, an enhanced function point model. Micro FP model, was suggested. Using this model, software effort estimation can be more efficiently because this model has some regression equation. This model specially can be applied to estimate in detail the large application system's size Analysis results show that measured software size by this Micro FP model has the advantage with more correlative between the one of LOC, as of 10 applications operated in an large organization.

Method of Quasi-Three Dimensional Stability Analysis of the Root Pile System on Slope Reinforcement (사면보강 뿌리말뚝공법의 준3차원적 안정해석기법)

  • Kim, Hong-Taek;Gang, In-Gyu;Park, Sa-Won
    • Geotechnical Engineering
    • /
    • v.13 no.5
    • /
    • pp.101-124
    • /
    • 1997
  • The root pile system is insitu soil reinforcement technique that uses a series of reticulately installed micropiles. In terms of mechanical improvement by means of grouted reinform ming elements, the root pile system is similar to the soil nailing system. The main difference between root piles and soil nailing are due to the fact that the reinforcing bars in root piles are normally grouted under high pressure and that the alignments of the reinforcing members differ. Recently, the root pile system has been broadly used to stabilize slopes and retain excavations. The accurate design of the root pile system is, however, a very difficult tass owing to geometric variety and statical indetermination, and to the difficulty in the soilfiles interaction analysis. As a result, moat of the current design methods have been heavily dependent on the experiences and approximate approach. This paper proposes a quasi-three dimensional method of analysis for the root pile system applied to the stabilization of slopes. The proposed methods of analysis include i) a technique to estimate the change in borehole radium as a function of the grout pressure as well as a function of the time when the grout pressure is applied, ii) a technique to evaluate quasi -three dimensional limit-equilibrium stability for sliding, iii) a technique to predict the stability with respect to plastic deformation of the soil between adjacent root piles, and iv) a quasi -three dimensional finite element technique to compute stresses and dis placements of the root pile structure barred on the generalized plane strain condition and composite unit cell concept talon형 with considerations of the group effect and knot effect. By using the proposed technique to estimate the change in borehole radius as a function of the grout pressure as well as a function of the time, the estimations are made and compar ed with the Kleyner 8l Krizek's experimental test results. Also by using the proposed quasi-three dimensional analytical method, analyses have been performed with the aim of pointing out the effects of various factors on the interaction behaviors of the root pile system.

  • PDF

Geometrically Nonlinear Analysis using Petrov-Galerkin Natural Element Method Natural Element Method (페트로프-갤러킨 자연요소법에 의한 기하하적 비선형 해석)

  • 이홍우;조진래
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.333-340
    • /
    • 2004
  • This paper deals with geometric nonlinear analyses using a new meshfree technique which improves the numerical integration accuracy. The new method called the Petrov-Galerkin natural element method (PGNEM) is based on the Voronoi diagram and the Delaunay triangulation which is based on the same concept used for conventional natural element method called the Bubnov-Galerkin natural element method (BGNEM). But, unlike BGNEM, the test shape function is differently chosen from the trial shape function. In the linear static analysis, it is ensured that the numerical integration error of the PGNEM is remarkably reduced. In this paper, the PGNEM is applied to large deformation problems, and the accuracy of the proposed numerical technique is verified through the several examples.

  • PDF

Meshless Method Based on Wave-type Function for Accurate Eigenvalue Analysis of Arbitrarily Shaped, Clamped Plates (임의 형상 고정단 평판의 고정밀도 고유치 해석을 위한 파동 함수 기반 무요소법)

  • Kang, Sang-wook
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.5
    • /
    • pp.602-608
    • /
    • 2016
  • The paper proposes a practical meshless method for the free vibration analysis of clamped plates having arbitrary shapes by extending the non-dimensional dynamic influence function (NDIF) method, which was developed by the author in 1999. In the proposed method, the domain and boundary of the plate of interest are discretized using only nodes without elements unlike FEM and the system matrices are obtained by making domain nodes and boundary nodes satisfy the governing differential equation and boundary conditions, respectively. However, since the above system matrices are not square ones, the problem of free vibrations of clamped plates is not reduced to an algebraic eigenvalue problem. An additional theoretical treatment is considered to produce an algebraic eigenvalue problem. It is revealed from case studies that the proposed method is valid and accurate.

AIT: A method for operating system kernel function call graph generation with a virtualization technique

  • Jiao, Longlong;Luo, Senlin;Liu, Wangtong;Pan, Limin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.5
    • /
    • pp.2084-2100
    • /
    • 2020
  • Operating system (OS) kernel function call graphs have been widely used in OS analysis and defense. However, most existing methods and tools for generating function call graphs are designed for application programs, and cannot be used for generating OS kernel function call graphs. This paper proposes a virtualization-based call graph generation method called Acquire in Trap (AIT). When target kernel functions are called, AIT dynamically initiates a system trap with the help of a virtualization technique. It then analyzes and records the calling relationships for trap handling by traversing the kernel stacks and the code space. Our experimental results show that the proposed method is feasible for both Linux and Windows OSs, including 32 and 64-bit versions, with high recall and precision rates. AIT is independent of the source code, compiler and OS kernel architecture, and is a universal method for generating OS kernel function call graphs.

The concept Analysis of Physical Activity (신체활동(Physical activity)의 개념분석)

  • Choi, Jung-An;Choe, Myoung-Ae
    • Journal of Korean Biological Nursing Science
    • /
    • v.6 no.1
    • /
    • pp.17-31
    • /
    • 2004
  • The purpose of this study was to analyze the concept of physical activity. The method was based on the steps of concept analysis by Walker and Avant(1988). The result of this study were as follows; Upon the concept analysis, physical activity is defined as a series of bodily movements which is performed voluntarily by individual. The defining attributes of physical activity were a series of bodily movements, energy expenditure, goal-directedness, and self-control of the body. The antecedents of physical activity were neuromusculoskeletal function, cardiopulmonary function and cognitive function. And the consequences of physical activity were improvement of physical function, induction of fatigue, and need(physiopsychosocial) satisfaction. Further studies are needed to develop the concept of physical activity using the Hybrid model. In addition, considering personal characteristics it is important to study the facilitating factors of physical activity.

  • PDF

A Study on the Characteristics of Pressure Wave Propagation in Automotive Exhaust System (자동차 배기계의 압력파 전파특성에 관한 연구)

  • 차경옥;이준서;김형섭
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.4
    • /
    • pp.18-26
    • /
    • 1996
  • Based on experimental analysis, the characteristics of pulsating pressure wave propagation is clarified by testing of 4-stroke gasoline engine. The pulsating pressure wave in exhaust system is generated by pulsating gas flow due to working of exhaust valve. The pulsating pressure wave is closely concerned to the loss of engine power according to back pressure and exhaust noise. It is difficult to exactly calculate pulsating pressure wave propagation in exhaust system because of nonlinear effect. Therefore, in the first step for solving these problems, this paper contains experimental model and analysis method which are applied two-port network analysis. Also, it shows coherence function, frequency response function, back pressure, and gradient of temperature in exhaust system.

  • PDF

A Study on the Characteristics of Pressure Wave Propagation in Spark Ignition Engine Exhaust System (점화기관 배기계의 압력과 전파특성에 관한 연구)

  • 박진용
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1996.03a
    • /
    • pp.72-78
    • /
    • 1996
  • Based on experimental analysis, the characteristics of pulsating pressure wave propagation is clarified by testing of 4-stroke gasoline engine. The pulsating pressure wave in exhaust system is generated gyulsating gas flow due the working of exhaust valve. The pulsating pressure wave is closely concerned to the loss of engine power according to back pressure and exhaust noise. It is difficult to exactly calculate pulsating pressure wave nonlinear effect. Therefore, in the first step for solving these problems, this paper contains experimental model and analysis method which are applied two-port network analysis. Also, it shows coherence function, frequency response function. back pressure, and gradient of temperature in exhaust system.

  • PDF

Analysis of the Tasks to Find Intersection Points of a Function and Its Inverse Function (역함수와의 교점을 구하는 과제에 대한 분석)

  • Heo, Nam Gu
    • The Mathematical Education
    • /
    • v.55 no.3
    • /
    • pp.335-355
    • /
    • 2016
  • The purpose of this study is to analyze tasks to find intersection points of a function and its inverse function. To do this, we produced a task and 64 people solved the task. As a result, most people had a cognitive conflict related to inverse function. Because of over-generalization, most people regarded intersection points of a function and y=x as intersection points of a function and its inverse. To find why they used the method to find intersection points, we investigated 10 mathematics textbooks. As a result, 23 tasks were related a linear function, quadratic function, or irrational function. 21 tasks were solved by using an equation f(x)=x. 3 textbooks presented that a set of intersection points of a function and its inverse was not equal to a set of intersection points of a function and y=x. And there was no textbook to present that a set of intersection points of a function and its inverse was equal to a set of intersection points of $y=(f{\circ}f)(x)$ and y=x.

Evaluation of Efficiency by Applying Different Optimization Method for Axial Compressor (최적화 방법에 따른 축류압축기의 효율평가)

  • Jang, Choon-Man;Abdus, Samad;Kim, Kwang-Yong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.543-544
    • /
    • 2006
  • Shape optimization of a transonic axial compressor rotor operating at the design flow condition has been performed using three-dimensional Navier-Stokes analysis and three different surrogate models: i.e.., Response Surface Method(RSM), Kriging Method, and Radial Basis Function(RBF). Three design variables of blade sweep, lean and skew are introduced to optimize the three-dimensional stacking line of the rotor blade. The object function of the shape optimization is selected as an adiabatic efficiency. Throughout the shape optimization of the rotor blade, the adiabatic efficiency is increased for the three different surrogate models. Detailed flow characteristics at the optimal blade shape obtained by different optimization method are drawn and discussed.

  • PDF