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Abstract 
 

Operating system (OS) kernel function call graphs have been widely used in OS analysis and 
defense. However, most existing methods and tools for generating function call graphs are 
designed for application programs, and cannot be used for generating OS kernel function call 
graphs. This paper proposes a virtualization-based call graph generation method called 
Acquire in Trap (AIT). When target kernel functions are called, AIT dynamically initiates a 
system trap with the help of a virtualization technique. It then analyzes and records the calling 
relationships for trap handling by traversing the kernel stacks and the code space. Our 
experimental results show that the proposed method is feasible for both Linux and Windows 
OSs, including 32 and 64-bit versions, with high recall and precision rates. AIT is independent 
of the source code, compiler and OS kernel architecture, and is a universal method for 
generating OS kernel function call graphs. 
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1. Introduction 

Operating system (OS) kernel function call graphs have been widely used in OS analysis and 
defense. Malware-like rootkits that use kernel-level attacks have been increasingly popular in 
recent years. Malware often gains the highest privilege of the operating system by exploiting 
vulnerabilities in the OS kernel [1], and can carry out malicious behavior such as hiding, 
destruction, monitoring, etc. [2-4], and several methods have been proposed to defend against 
this. Function call graphs play an important role in these methods, such as finding malware 
hooking code [5], extending the system to defend against ROP attacks [6] and analyzing the 
similarities between two types of malware [7]. 

At present, methods for generating function call graphs can be divided into two classes: 
static and dynamic generation methods. Static methods mainly include the analysis of source 
[8] and binary code [9]. These types of call graph generation method can achieve a high recall 
rate, since the instructions for each function call must appear in the entire source file or binary 
file. However, static generation methods face a significant problem in that dynamic calling, 
such as via function pointers, is based upon approximations [10], and the analysis is therefore 
not dependent upon the exact calling relation of the running program. 

Dynamic generation methods acquire the function calling relation by dynamically 
analyzing issues while the target program is running. These methods include inserting testing 
code into the head of the call function to hook the calling operation [11], obtaining calling 
information via the Intel Pin framework [12], etc. With the help of the information obtained 
from dynamic analysis, these generation methods can acquire the exact calling relation of the 
running program. This characteristic allows for a high precision rate, especially for dynamic 
calling such as via function pointers. However, the recall rate will be influenced by the 
comprehensiveness of the testing steps. In view of the pervasive use of dynamic calling in the 
OS kernel, which cannot be handled accurately by static generation methods, this paper 
focuses on dynamic generation methods. 

The more recent and familiar methods of dynamic function call graph generation focus on 
the generation of graphs for application programs such as JavaScript programs [10,13], and 
rely on the use of source code [11], symbol tables [14], a specified compiler, kernel 
architecture [15-16], etc. However, when applied to the OS kernel, these conditions may not 
be met. For instance, source code and symbol tables are unobtainable for closed-source OS 
kernels. 

Existing methods of dynamic generation of function call graphs involve many dependency 
conditions when building the OS kernel function call graph. This paper proposes a dynamic 
method for generating function call graphs called Acquire in Trap (AIT), which uses 
virtualization. This method can efficiently build a function call graph for an OS kernel 
independent of the source code, compiler or OS kernel architecture, and can be used for both 
Linux and Windows OS, including 32 and 64-bit versions. 

The remainder of this paper is organized as follows. Section 2 examines the related work in 
the field of function call graph generation. Section 3 describes the principles and 
implementation of AIT with virtualization technology. Section 4 presents an experimental 
evaluation, and Section 5 discusses the results. Finally, conclusions and future work are drawn 
in Section 6. 
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2. Related Work 
This paper focuses on dynamic generation methods. The basic architecture for dynamic 

generation methods is illustrated in Fig. 1.Current dynamic generation methods include the 
classes mentioned below. 

 
Fig. 1. Basic architecture for dynamic generation methods 

 
Generation methods implemented using compilers have restrictions on the compiling 

environment. Some compilers provide options for programmers to add custom codes while 
compiling, allowing them to change the execution flow by adding codes into the head of each 
function and recording the calling operation in these additional codes. In iComnstance, GCC 
provides the "-pg'' compile option for programmers to realize this purpose. Based on this, the 
application analysis tool Gprof adds a function named "mcount'' into the head of each function 
in the program. Whenever a function calling operation takes place, the function "mcount'' will 
execute first, and Gprof will record the caller and callee information. This type of generation 
method relies on the compiling environment (compiler and source code), meaning that it is 
unavailable for an OS that is not compiled by these specific compilers, such as Windows. 
Similarly, other tools that use compiler options to realize OS kernel analysis, such as Ftrace 
[17], are also limited by the compiling environment. 

Generation methods implemented using a kernel API are limited by the kernel architecture. 
The debug tool Systemtap uses Linux kernel API Kprobes to monitor and track the execution 
of a program [15]. Kprobes realizes function analysis by hooking target codes at the OS kernel 
level. Based on Kprobes, Systemtap can analyze the application function calling relation; 
however, since Kprobes is provided by the Linux kernel, Systemtap can only generate the 
function call graph for applications in Linux. 

Generation methods such as those that use the Pin mechanism can only be utilized in 
user-level program analysis. Jalan built a framework called Trin-Trin to analyze function 
calling relations using the Pin mechanism [18]. Pin is provided by Intel CPU for the purpose of 
analyzing programs, and allows programmers to conFig. interrupt conditions by executing 
specific piece of code to analyze the running state. Trin-Trin uses this mechanism to interrupt 
each calling operation, and thus acquires the calling relation. However, as Pin is located in the 
OS [19], this method can only be used to analyze user-level programs and is thus unavailable 
for OS kernel analysis.  

Generation methods implemented using a stack and register analysis are not accurate for 
OS kernel investigations. Some debug tools such as Windbg offer checking of the calling route, 
and provide a calling route analysis for current debugging functions. Windbg implements this 
function by checking kernel stacks and the EBP register. In most application programs, the 
return address and EBP value of the caller function will be stored on the stack for the callee 
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function. Windbg uses this information to get the calling relation of the current debugging 
function. However, many OS kernel functions do not store the EBP value on the kernel stack, 
meaning that Windbg cannot obtain the accurate calling route. Analysis tools such as Perf [20] 
analyze the context to obtain information on the caller function for the current function using 
periodic sampling, but in the same way as Windbg, this process will cause errors when 
analyzing some operating system kernel functions. Thus, Perf needs the symbol table as a 
reference, or needs to add extra parameters in compiling, making it unsuitable for certain 
closed source operating systems. 

Existing function call graph generation methods therefore mainly focus on application 
programs rather than relying on other conditions such as the compiler and kernel architecture. 
These limitations make these methods inapplicable for OS kernel function analysis. In 
addition, some dynamic analysis tools and methods rely on the OS kernel API or architecture, 
meaning that they are only suitable for specific OS kernels or programs. 

Following the development of virtualization technology, cloud services based on 
virtualization platforms have become widely used [21]. At the same time, virtualization 
technology has generated new opportunities and challenges for the generation of function call 
graphs. The virtual machine monitor layer has been introduced into the computer architecture 
of the virtualization platform, and provides a trusted virtual environment that can directly 
detect and control the running state, kernel code and data of operating system kernel. Using 
this property, many detection methods based on virtualization platforms have been proposed 
and studied [22-23]. 

This paper proposes a universal dynamic generation method for OS kernel function call 
graphs, called AIT. This approach is based on virtualization technology and does not rely on 
factors such as the source code, compiler, OS kernel API or architecture. AIT is therefore 
applicable to many types of OS kernel, including Windows or Linux with 32 and 64 bits. 

3. Call Graph Generation Method  

3.1 Framework 
AIT uses virtualization technology to generate call graphs. By replacing the first two bytes 

of the target function with specific instructions, the kernel control flow traps into the 
virtualization space and analyzes the calling relation whenever the target function is called. 

 
Fig. 2. AIT architecture 
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The overall architecture of AIT is illustrated in Fig. 2, showing the three levels of hardware, 

virtual machine monitor and virtual machine (with the guest OS kernel). 
The guest OS runs on an abstract computing platform called a virtual machine (VM). The 

middle level, which manages the VM, is called the virtual machine monitor (VMM); this 
isolates different VMs and has a higher privilege than the guest OS in VM [24], and can 
therefore analyze and monitor the guest OS kernel. 

There are three primary modules in AIT: the trap insert, information analysis and 
post-processing modules. With the help of the higher privilege provided by the VMM, the trap 
insert and information analysis modules can monitor the running guest OS kernel. The 
methods of analysis include modifying kernel instructions and acquiring kernel data and 
register values. By modifying the kernel instructions, the trap insert module can insert special 
instructions into the kernel space that form the kernel trap in the guest OS kernel, and trigger 
the trap handler at a specific time. In the trap handler, the information analysis module 
determines the function calling information based on the trap and kernel information. Using 
this information, the information analysis module provides detailed trap control information 
for the trap insert module. The data and control flow between the trap insert module, the kernel 
trap instructions and the information analysis module allows for the complete analysis of 
function calling information. The information analysis module also provides calling 
information for the post-processing module, which stores the information with a specific 
structure and handles the duplication issue. 

AIT realizes the main functions in VMM rather than the guest OS, and thus the 
implementation of AIT does not have a close relation with the guest OS as in existing 
generation methods. In this paper, the open-source project XEN [25] is used to realize AIT. 
The details of each primary module are described in Sections 3.1 to 3.4. 

3.2. Trap Insert 

3.2.1. Principles 
Using virtualization technology, a trap mechanism is proposed to address various special 

events such as page faults and interrupts. More specifically, special "trap instructions'' such as 
0xcc (int3) trigger the trap handler. In the trap handler, the VM and guest OS are paused, and 
the VMM obtains the control flow and permission to read and write the data or instructions 
into the kernel space of the guest OS. Using this mechanism, AIT inserts "trap instructions'' 
into important areas of the guest OS kernel, and when the kernel control flow reaches these 
areas, AIT can pause the guest OS and analyze it. 

In this implementation, in order to ensure the normal operation of VM, AIT inserts the trap 
instruction 0xcc to trigger the trap handler and restore the primeval kernel instruction after 
kernel analysis in the trap handler. Thus, for a target instruction address AT  to be analyzed, 
AIT saves the primeval instruction AC  and replaces it with 0xcc. When the kernel instruction 
flow reaches AT , 0xcc will be executed and causes the int3 trap. In the int3 trap handler, the 
information analysis module will complete the analysis, and AC  will be replaced with AT , 
after which the guest OS runs normally. 

Since the int3 trap mechanism is created by the virtualization framework and the only 
modification to the guest OS is the replacement of the original code with 0xcc, the trap insert 
module does not have a significant relationship with the guest OS, providing a high level of 
compatibility with different OSs. 
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3.2.2. Implementation 
In the open-source hardware virtualization project XEN, the functions 

hvm_copy_from_guest_virt and hvm_copy_to_guest_virt are provided for reading and 
writing data in the kernel space of the guest OS. Based on the information presented above, 
trap insert module in AIT inserts and manages the trap instructions. 

In this module, each trap instruction contains two bytes. The first byte is 0xcc, which 
causes the int3 trap, as described above. The second byte marks this type of trap, as shown in 
Table 1. When a trap occurs, the information analysis and trap insert modules will perform 
different types of analysis based on the value of the second byte. 

 
Table 1. Type of trap instruction  

Value Description 
0x00 Trap in the head of the function 
0x01 Trap next to the head of the function 
0x02 Trap in the calling instruction 
0x03 Trap next to the calling instruction 
0x04 Trap in the return instruction 
0x05 Trap in the debug address 
0x06 Trap in the dynamic calling instruction 
0x07 Trap next to the dynamic calling instruction 

 
For each inserted trap instruction, the trap insert module stores the first two bytes and the 

address of the target code before replacing them with a suitable trap instruction. Following this, 
when the instruction flow reaches the target address, the 0xcc will cause the int3 trap, and the 
trap handler in VMM will be executed to deal with the calling information analysis. 

AIT needs a function header address as a "starting point''. This address is entered as a 
parameter when AIT is started, and can be obtained from the operating system kernel symbol 
table or kernel debugging. The header addresses for the rest of the functions can be found 
automatically from the information analysis module. 

After analyzing the calling information, in order to ensure the guest OS can run properly, 
the replaced instruction must be restored to the stored primeval code. However, in the case of 
multiple calling relations, the trap instruction should be maintained in order to continue the 
process of acquiring calling information. A method called "cross-replacing'' is used for this 
purpose in AIT. 

We assume that in function A, the first instruction is C1, and the second is C2. The 
primeval instructions C1 and C2 are first stored as a back-up and C1 is then replaced with 
0xcc00, which means this trap is in the head of the function (this is usually the first instruction). 
After analyzing the information, 0xcc00 is replaced with C1 and C2 is set to 0xcc01, meaning 
that this trap is next to the head of the function (usually the second instruction). Thus, when the 
guest OS is resumed, code C1 will also be executed, and a trap is placed at 0xcc01. Finally, 
0xcc01 is restored back to C2 and 0xcc00 to C1; the guest OS can then run while the trap 
remains in the head of the function. Type value 0x01, 0x03 and 0x07 in Table 1 is in charge of 
"cross-replacing''. 

It should be noted that each trap instruction holds two bytes in the guest OS kernel space; if 
the instruction C1 is shorter than 2 bytes, then 0xcc00 will cover two instructions. Thus, when 
0xcc01 is restored back to C2 and replace C1 as 0xcc00, the first byte of C2 will still be 
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replaced as 00 by 0xcc00. As a result, cross-replacing must be executed between the first 
instruction C1 and the third instruction C3. In order to confirm the length of each instruction in 
the kernel space, a simple disassembling function is added to the trap insert module in order to 
test the length of the assembly instruction. 

 

3.3. Information Analysis 

3.3.1. Principles 
In virtualization technology, the VMM is responsible for providing an abstract hardware 

platform, meaning that the VMM controls the hardware utilized by VM, including the 
registers and RAM. Hence, the VMM has the highest permission to read and write data in the 
guest OS kernel space. Based on this authority, AIT analyzes the information in the kernel 
space during trap handling. 

The information analysis module mainly deals with two targets, the calling instruction 
address and the function header address. As mentioned in Section 3.2.1, the trap insert module 
is responsible for inserting the trap instructions into the target address to create the int3 trap. 
For a target function AF , the function header is denoted by AH ; if a trap takes place in AH , 

AF  is called via a calling instruction BC , and the address of 1BC +  (the next instruction after 

BC ) is stored on the top of the stack. Thus, the information analysis module will acquire the 
pair ( ),B AC H  by analyzing the register and the kernel stack. 

If the calling instruction BC  belongs to the function BF , then BF  also needs to be analyzed 
to complete the entire call graph. In normal circumstances, a function header can be easily 
analyzed with the help of the OS kernel symbol table. To ensure compatibility with certain 
OSs that do not provide a kernel symbol table, AIT provides a special method for locating the 
function header. The information analysis module finds the return instruction BR  from BC  
and instructs the trap insert module to set a trap instruction there. When a trap occurs in BR , 
which means function BF  will return to its caller function CF , the return address (the address 
of 1CC + ) is stored on the top of the stack. The calling instruction CC  can be found from 1CC + , 
and CC  carries the information of the BF  header address BH . By following these steps, the 
relation pair is acquired as ( ),B BH C . 

The complete information analysis relation is shown in Fig. 3. The arrows show the 
call/return direction of the instruction flow, the solid line shows the process of analysis of the 
pair ( ),B AC H , and the dotted line shows the process of analysis of the pair ( ),B BH C . The 
complete calling relation between AF  and BF  is acquired by combining these two relation 
pairs as ( ) ( )( ), ,A A B B BF H F H C ; this means that function BF  (starting from header BH ) uses 
instruction BC  to call function BF  (starting from header AH ). 
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Fig. 3. Information analysis relations 

3.3.2. Implementation 
In the open-source hardware virtualization project XEN, the int3 trap is processed in the 

function vmx_vmexit_handler, which is rewritten to realize the information analysis module. 
As described in Section 3.3.1, the purpose of the information analysis module is to acquire 

the calling relation pairs of the target function. This module consists of two main parts: calling 
relation analysis and trap instruction control. 

The calling relation analysis is responsible for acquiring calling relation pairs, such as 
( ),B AC H  and ( ),B BH C , as described in Section 3.2.2. The VMM has the highest level of 
privilege, so the kernel data can be read using the function hvm_copy_from_guest_virt, and 
the register can be read using function __vmread and regs structure. 

In the information analysis module, the functions that need to be analyzed are stored in a 
function array containing the function header address. The steps involved in a typical analysis 
are as follows. 

(1) The information analysis module instructs the trap insert module to insert the trap 
instruction into the target functions ( )1 2, , , nF F FL  using the "trap in head of function'' type; 

(2) When the trap takes place in the head of the function AF , the caller instruction BC  can 
be found by analyzing the ESP register and the kernel stack data; 

(3) In order to find the header address BH  of BF , the information analysis module finds 
the return instruction (0xc3 or 0xc2) from BC  and instructs the trap insert module to insert a 
trap instruction of the "Trap in return instruction'' type; 

(4) When a trap occurs in the return instruction, the caller instruction CC  can be found by 
analyzing the ESP register and the kernel stack data;  

(5) By analyzing CC , the header address BH  of BF  can be found and added into the 
function table. Finally, the analysis module moves to the next target function. 

By following these steps, a multi-level call graph can be generated from a single root 
function. Fig. 3 in Section 3.2.2 shows the relations between the symbols, and Fig. 4 shows 
how the call graph can be generated. When the analysis of a new target function is complete, 
the new function is added into the call graph (shown as a dashed box in each step), where the 
arrow shows the calling direction. It should be noted that the termination condition of the 
above automated generation process is that no new function call relationship is found within 
the timeout period. 
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Fig. 4. Call graph generation process 

 
There are two problems that require special attention in the abovementioned steps. Firstly, 

for some functions with a branch structure, there may be several return instructions (0xc3 or 
0xc2) in the function; however, only one will be executed when the function returns. Thus, in 
Step 3, all of the return instructions in the function need to be found to ensure that the trap will 
occur when the function returns. The information analysis module therefore searches all the 
return instructions after BC  by traversing the instruction flow, including the return 
instructions in the branch structure. It is worth noting that some special functions will not 
follow the direction of the increasing address, and may jump to a lower address. Thus, the 
search for the return instruction should not only follow the address direction, but also each 
jump operation. 

In practice, since kernel instructions are stored as assembly instructions, not all functions 
will have an obvious dividing mark such as 0xcccccc, making it hard to judge the end of the 
function. In this case, the return instruction is found via the following steps: 

(1) Find the first return instruction 1R  from BC , and insert the trap instruction in 1R  and 

BC ; 
(2) Keep the guest OS running, and wait for a trap to occur; 
(3) If the next trap occurs in ( )1,2,3,nR n = L , meaning that the return operation is 

captured, find the calling instruction CC , as mentioned above; 
(4) If the next trap occurs in BC , meaning that the return operation has been missed, find 

the next return instruction 1mR +  from mR  onwards ( mR  is the final return instruction which 
has been found); then insert the trap instruction in 1mR +  and return to Step 2. 

Second, in Step 5, the calling instruction CC  that carries the information about BH  may be 
of different types (Table 2 shows some examples of types of calling instruction). 

In some calling instructions, the calling target may be stored statically or may change while 
the guest OS is running. This means that the target address can only be determined as the 
calling instruction is being executed. In order to obtain the real calling target address from the 
calling instruction, a trap instruction is inserted into this calling instruction ( CC ) with the "trap 
in dynamic calling instruction'' symbol (0x06 in Table 1). When a trap of this type occurs, the 
information analysis module will record the value of the real calling target address. 
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Meanwhile, for certain dynamic calling instructions such as call eax, the target calling 
address may change when the instruction is executed; however, only one target address is the 
real header address BH . Thus, all feasible target addresses are collected when the "trap in 
dynamic calling instruction'' trap occurs. In consideration of the real header address, BF  must 
be in front of BC , and the most probable target address is selected, which is located before but 
closest to BC  as the final header address of BF . 

 
Table 2. Examples of calling instructions 

Calling instruction Meaning 
0xff15+4bytes address Call [4bytes address] 

0xff5348 Call [ebx+0x48] 
0xff55ec Call [ebp-0x14] 
0xffd7 Call edi 
0xffd0 Call eax 
0xff10 Call [eax] 
0xffd3 Call ebx 
0xffd1 Call ecx 

3.4. Post-Processing 

3.4.1. Principles 
The function calling information provided by the information analysis module is stored as 
( ) ( )( ), ,A A B B BF H F H C . Since AH  can represent AF , and BH  can represent BF , the 

information structure can be rewritten in the form of triples ( ), ,A B BH C H  containing the 
complete calling information of one function calling operation, i.e. the header address AH  of 
the callee function, the calling instruction address BC  and the caller header address BH , as 
shown in the image marked Simple 1 in Fig. 5. 

However, for complete analysis processing, the information analysis module will provide a 
number of calling information triples, such as ( )1 1 1, ,A B BH C H , ( )2 2 2, ,A B BH C H , L , 

( ), ,An Bn BnH C H . The post-processing module is in charge of cleaning up this information in 
the following ways: 

(1) Dropping duplicate triples. If two triples are identical, they describe the same calling 
operation at different times, which is very common. Thus, when the information analysis 
module creates a calling information triple, the post-processing module first tests whether or 
not this triple is new. 

(2) Combining the same callee function. For two triples ( )1 1 1, ,A B BH C H  and 

( )2 2 2, ,A B BH C H , if 1 2A A AH H H= = , the same function AF  is called by different two calling 
instructions 1BC  and 2BC . Thus, these two triples should be combined as 

( ) ( )( )1 1 1 2 2, , , ,A B B B BH C H C H , as shown in the Simple 2 scheme in Fig. 5. 

(3) Combining the same caller functions. For two triples ( )1 1 1, ,A B BH C H  and 

( )2 2 2, ,A B BH C H , if 1 2A A AH H H= =  and 1 2B B BH H H= = , the same function AF  is called by 
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the same function BF  via different calling instructions 1BC  and 2BC , a situation that will 
occur in functions with a branch. Thus, these two triples should be combined as 

( )( )1 1 2 2, , ,A B B BH C C H , as shown in the Simple 3 scheme in Fig. 5. 

(4) Combining dynamic calling. For two triples ( )1 1 1, ,A B BH C H  and ( )2 2 2, ,A B BH C H , if 

1 2A AH H≠  and 1 2B B BC C C= = , this means that the calling instruction BC  is a dynamic call 
(like a function pointer), which will call different functions each time according to its 
parameter values. Thus, these two triples should be combined as ( )( )1 2 1 1, , ,A A B BH H C H , as 
shown in Simple 4 in Fig. 5. 

 
Fig. 5. Process of generating a call graph  

3.4.2. Implementation 
As mentioned above, the post-processing module is mainly in charge of combining calling 

information based on the calling information triple provided by the information analysis 
module. 

The calling information triple ( ), ,A B BH C H  is stored in a two-dimensional chain table. 
One dimension provides a structure for the information of the callee function, and the other for 
the the caller function. The information in each dimension is shown in Tables 3 and 4. 

 
Table 3. Content of the callee function information 

Item Content 
Header address The header address of this callee funtion 

Next header address Address of second instruction 
Header instruction First instruction 
Second instruction Second instruction 

Next callee function Pointer to next callee function information 
 

Table 4. Content of the caller function information 
Item Content 

Calling instruction address The address of calling instruction 
Next calling instruction address Address of instruction next to calling instruction 

Header address Header address of this caller function 
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When the information analysis module provides a new calling information triple 
( ), ,A B BH C H  the post-processing module completes the processing using the following steps: 

(1) Traverse the callee function information chain table, and find the node with the header 
address AH ; 

(2) Traverse the caller function information chain table of AH , and determine whether 

BC  is in the table; if not, add a new node with calling instruction address BC ; 
(3) Traverse the callee function information chain table, and determine whether BH  is in 

the table; if not, add a new node with header address BH  to start finding the parent functions 
of BH . 

Fig. 6 shows how the link list is built while the information analysis module is running. 

 
Fig. 6. Process of generating the calling information chain table  

4. Experimental Results and Analysis 
The purpose of this experiment is to verify the correctness of AIT and to determine whether 

it is suitable for different OSs. A total of 207 common kernel functions were chosen from 
32-bit Windows XP (SP3), 64-bit Windows10 (17134.345) and 64-bit CentOS 7.5, with Linux 
3.10.0-862 as the "starting point'' and a timeout of five minutes. 

A trusted call graph is needed, meaning that the source code of the testing OS kernel is 
requried. Thus, the Windows Research Kernel (WRK) [26] and Linux 3.10.0-862 kernel 
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source were downloaded to build a trusted call graph for Windows XP and CentOS 7.5. The 
trusted call graph for Windows 10 was built by manual kernel debugging. 

The precision rate and recall rate were chosen as evaluation criteria. The precision rate (P) 
and recall rate (R) were calculated using the following formulae: 

 
D H

D

F FP
F
∩

=      (1) 

D H

H

F FR
F
∩

=      (2) 

 
where DF  is the number of function call behaviors obtained by AIT and HF  is the number of 
function call behaviors obtained by hand, with the help of the Windows Research Kernel, the 
Linux kernel source code and the OS kernel debug tools. 

The final results are shown in Table 5 (where ST means the symbol table of the operating 
system kernel).  

 
Table 5. Precision and recall results 

Operating System FD FH FD∩FH P R 
XP SP3 with ST 432 452 432 100% 95.58% 

XP SP3 without ST 357 452 357 100% 78.98% 
Windows10 with ST 335 351 335 100% 95.44% 

Windows10 without ST 247 351 247 100% 70.37% 
CentOS 7.5 with ST 379 394 379 100% 96.19% 

CentOS 7.5 without ST 285 394 285 100% 72.34% 
 
The results show that the AIT method of call graph generation is suitable for 

Windows/Linux OS kernel functions, for both 32- and 64-bit OSs. Moreover, the main 
modules of AIT are in the VMM, meaning that the implementation of these modules barely 
relates to the guest OS. Thus, when generating different OS kernel function call graphs, the 
only aspects which need to be modified are the parameters of AIT, as the lengths of the 
variables depend on the version of the OS. 

The calculated precision rate for every function is 100%, since the function calling 
operation was acquired from the actual execution, meaning that every calling operation that 
was discovered was executed during the testing process. 

The recall rate was above 95% when a symbol table was available. After rechecking the 
missing function calling relations, it was found that AIT did not traverse the entire code space. 
Certain special calling instructions will only execute in special cases, such as registry editing 
or file downloading, and AIT missed these function calling relations that were not activated. 

The recall rate dropped significantly when a symbol table was unavailable. After manual 
debugging, several special kernel functions were found that prevent the function information 
analysis process in AIT from taking place. These functions mean that AIT cannot get 
information such as the function header address in order to start the detection of the calling 
relation, as described in Section 3.2.1. 

(1) Some functions are designed as an endless loop. For example, ExpWorkerThread is in 
charge of managing all of the threads, and has an endless loop to carry out this management, 
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never returning to its parent function. This will terminate the information analysis process in 
Section 3.2.2. 

(2) Some functions do not have a return instruction (0xc2 or 0xc3). For example, 
HalpApcInterrupt ends in a special way: pushing the real return address A, relevant parameter 
and jumping to another instruction address B. Thus when B is complete, the flow will return to 
A. 

(3) The return instruction in some functions cannot be executed. For example, 
nt!PspExitThread makes the kernel switch the thread before the instruction flow come to the 
return instruction. This function will also then be interrupted, and the return instruction will 
never be executed. 

These special functions are mainly written directly in assembly language, and 
programmers simplify the instructions for optimizing the OS kernel. These functions do not 
follow the standard rules, and the process of analysis of these functions also needs to be 
specially designed. 

AIT, the method proposed in this paper for generating OS kernel function call graphs, has 
the following advantages. Firstly, the call graph generation method relies only on the 
mechanism of the function calling process, and does not rely on any other factors except the 
processor architecture (apply to mainstream CPUs such as Intel). In comparison with existing 
research studies of call graph methods, AIT has a wider range of applications since it relies 
only on the source code and a compiler. 

Secondly, virtualization technology is used in AIT to analyze the OS kernel, meaning that 
the generation method is not relevant to the target OS and does not rely on the OS kernel 
architecture or functions. Hence, AIT is compatible with a wider range of OS kernels. 

Thirdly, function calling operations are captured by inserting the trap instruction into the 
target function header; the parent functions can therefore be acquired easily, which is 
important in generating a calling whitelist and in kernel security. 

However, certain functions such as those mentioned in Section 4 need to be resolved in 
order to complete the function information acquiring process. In addition, for dynamic calling 
(such as call [eax]) in the information analysis module, the real header address is determined 
by collecting every feasible target address, as described in Section 3.3. In some cases, the 
target function may never be called during the process of information collection, meaning that 
AIT cannot obtain the real header address and may provide an incorrect header. 

 
Table 6. Functional comparison of results 

Generation method/tools WinDbg GDB Ftrace Systemtap Pin Perf AIT 
Not dependent on the compiler √ √ × √ √ √ √ 
Not dependent on the OS type √ √ √ × √ √ √ 

Available for OS kernel function √ √ √ √ × √ √ 
Not dependent on kernel stack 

backtracking √ √ √ √ √ × √ 

Not dependent on manual debugging × × √ √ √ √ √ 

5. Conclusions 
This paper presents an operating system kernel function call graph generation method 

called Acquire in Trap (AIT), which generates function calling relations for OS kernels by 
using virtualization technology to insert trap instructions with different symbols into the 
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important address, and finishes the analysis work in the trap handler to analyze the function 
calling relations. 

Compared with other generation methods proposed in various research studies, AIT is 
independent of the source code, compiler or OS kernel architecture, allowing for a wide range 
of applications. The experimental results show that AIT can acquire the OS kernel function 
calling relations and the function header address information to build the OS kernel functions, 
resulting in a precision rate of 100% and a recall rate of 87.5%, and is compatible with x86/x64 
architectures for both Linux and Windows OS. 

Future studies will first focus on extending the practical scope of application of AIT, such 
as to macOS and FreeBSD. The detection of kernel-level malicious behavior will then be 
studied based on AIT. 
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