
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 5, May. 2020 2084
Copyright ⓒ 2020 KSII

http://doi.org/10.3837/tiis.2020.05.012 ISSN : 1976-7277

AIT: A method for operating system kernel
function call graph generation with a

virtualization technique

Longlong Jiao1, Senlin Luo1, Wangtong Liu1 and Limin Pan1*
1 Information System & Security and Countermeasures Experiments Center, Beijing Institute of Technology

Beijing 100081, China
[e-mail: xiguazzz@foxmail.com, luosenlin2012@gmail.com, lwt1231234@126.com, panlimin2016@gmail.com]

*Corresponding author: Limin Pan

Received May 27, 2019; revised December 11, 2019; accepted February 19, 2020;
published May 31, 2020

Abstract

Operating system (OS) kernel function call graphs have been widely used in OS analysis and
defense. However, most existing methods and tools for generating function call graphs are
designed for application programs, and cannot be used for generating OS kernel function call
graphs. This paper proposes a virtualization-based call graph generation method called
Acquire in Trap (AIT). When target kernel functions are called, AIT dynamically initiates a
system trap with the help of a virtualization technique. It then analyzes and records the calling
relationships for trap handling by traversing the kernel stacks and the code space. Our
experimental results show that the proposed method is feasible for both Linux and Windows
OSs, including 32 and 64-bit versions, with high recall and precision rates. AIT is independent
of the source code, compiler and OS kernel architecture, and is a universal method for
generating OS kernel function call graphs.

Keywords: Function call graph, operating system kernel, virtualization, system trap

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 5, May 2020 2085

1. Introduction

Operating system (OS) kernel function call graphs have been widely used in OS analysis and
defense. Malware-like rootkits that use kernel-level attacks have been increasingly popular in
recent years. Malware often gains the highest privilege of the operating system by exploiting
vulnerabilities in the OS kernel [1], and can carry out malicious behavior such as hiding,
destruction, monitoring, etc. [2-4], and several methods have been proposed to defend against
this. Function call graphs play an important role in these methods, such as finding malware
hooking code [5], extending the system to defend against ROP attacks [6] and analyzing the
similarities between two types of malware [7].

At present, methods for generating function call graphs can be divided into two classes:
static and dynamic generation methods. Static methods mainly include the analysis of source
[8] and binary code [9]. These types of call graph generation method can achieve a high recall
rate, since the instructions for each function call must appear in the entire source file or binary
file. However, static generation methods face a significant problem in that dynamic calling,
such as via function pointers, is based upon approximations [10], and the analysis is therefore
not dependent upon the exact calling relation of the running program.

Dynamic generation methods acquire the function calling relation by dynamically
analyzing issues while the target program is running. These methods include inserting testing
code into the head of the call function to hook the calling operation [11], obtaining calling
information via the Intel Pin framework [12], etc. With the help of the information obtained
from dynamic analysis, these generation methods can acquire the exact calling relation of the
running program. This characteristic allows for a high precision rate, especially for dynamic
calling such as via function pointers. However, the recall rate will be influenced by the
comprehensiveness of the testing steps. In view of the pervasive use of dynamic calling in the
OS kernel, which cannot be handled accurately by static generation methods, this paper
focuses on dynamic generation methods.

The more recent and familiar methods of dynamic function call graph generation focus on
the generation of graphs for application programs such as JavaScript programs [10,13], and
rely on the use of source code [11], symbol tables [14], a specified compiler, kernel
architecture [15-16], etc. However, when applied to the OS kernel, these conditions may not
be met. For instance, source code and symbol tables are unobtainable for closed-source OS
kernels.

Existing methods of dynamic generation of function call graphs involve many dependency
conditions when building the OS kernel function call graph. This paper proposes a dynamic
method for generating function call graphs called Acquire in Trap (AIT), which uses
virtualization. This method can efficiently build a function call graph for an OS kernel
independent of the source code, compiler or OS kernel architecture, and can be used for both
Linux and Windows OS, including 32 and 64-bit versions.

The remainder of this paper is organized as follows. Section 2 examines the related work in
the field of function call graph generation. Section 3 describes the principles and
implementation of AIT with virtualization technology. Section 4 presents an experimental
evaluation, and Section 5 discusses the results. Finally, conclusions and future work are drawn
in Section 6.

2086 Jiao et al.: AIT: A method for operating system kernel function call graph generation
with a virtualization technique

2. Related Work
This paper focuses on dynamic generation methods. The basic architecture for dynamic

generation methods is illustrated in Fig. 1.Current dynamic generation methods include the
classes mentioned below.

Fig. 1. Basic architecture for dynamic generation methods

Generation methods implemented using compilers have restrictions on the compiling

environment. Some compilers provide options for programmers to add custom codes while
compiling, allowing them to change the execution flow by adding codes into the head of each
function and recording the calling operation in these additional codes. In iComnstance, GCC
provides the "-pg'' compile option for programmers to realize this purpose. Based on this, the
application analysis tool Gprof adds a function named "mcount'' into the head of each function
in the program. Whenever a function calling operation takes place, the function "mcount'' will
execute first, and Gprof will record the caller and callee information. This type of generation
method relies on the compiling environment (compiler and source code), meaning that it is
unavailable for an OS that is not compiled by these specific compilers, such as Windows.
Similarly, other tools that use compiler options to realize OS kernel analysis, such as Ftrace
[17], are also limited by the compiling environment.

Generation methods implemented using a kernel API are limited by the kernel architecture.
The debug tool Systemtap uses Linux kernel API Kprobes to monitor and track the execution
of a program [15]. Kprobes realizes function analysis by hooking target codes at the OS kernel
level. Based on Kprobes, Systemtap can analyze the application function calling relation;
however, since Kprobes is provided by the Linux kernel, Systemtap can only generate the
function call graph for applications in Linux.

Generation methods such as those that use the Pin mechanism can only be utilized in
user-level program analysis. Jalan built a framework called Trin-Trin to analyze function
calling relations using the Pin mechanism [18]. Pin is provided by Intel CPU for the purpose of
analyzing programs, and allows programmers to conFig. interrupt conditions by executing
specific piece of code to analyze the running state. Trin-Trin uses this mechanism to interrupt
each calling operation, and thus acquires the calling relation. However, as Pin is located in the
OS [19], this method can only be used to analyze user-level programs and is thus unavailable
for OS kernel analysis.

Generation methods implemented using a stack and register analysis are not accurate for
OS kernel investigations. Some debug tools such as Windbg offer checking of the calling route,
and provide a calling route analysis for current debugging functions. Windbg implements this
function by checking kernel stacks and the EBP register. In most application programs, the
return address and EBP value of the caller function will be stored on the stack for the callee

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 5, May 2020 2087

function. Windbg uses this information to get the calling relation of the current debugging
function. However, many OS kernel functions do not store the EBP value on the kernel stack,
meaning that Windbg cannot obtain the accurate calling route. Analysis tools such as Perf [20]
analyze the context to obtain information on the caller function for the current function using
periodic sampling, but in the same way as Windbg, this process will cause errors when
analyzing some operating system kernel functions. Thus, Perf needs the symbol table as a
reference, or needs to add extra parameters in compiling, making it unsuitable for certain
closed source operating systems.

Existing function call graph generation methods therefore mainly focus on application
programs rather than relying on other conditions such as the compiler and kernel architecture.
These limitations make these methods inapplicable for OS kernel function analysis. In
addition, some dynamic analysis tools and methods rely on the OS kernel API or architecture,
meaning that they are only suitable for specific OS kernels or programs.

Following the development of virtualization technology, cloud services based on
virtualization platforms have become widely used [21]. At the same time, virtualization
technology has generated new opportunities and challenges for the generation of function call
graphs. The virtual machine monitor layer has been introduced into the computer architecture
of the virtualization platform, and provides a trusted virtual environment that can directly
detect and control the running state, kernel code and data of operating system kernel. Using
this property, many detection methods based on virtualization platforms have been proposed
and studied [22-23].

This paper proposes a universal dynamic generation method for OS kernel function call
graphs, called AIT. This approach is based on virtualization technology and does not rely on
factors such as the source code, compiler, OS kernel API or architecture. AIT is therefore
applicable to many types of OS kernel, including Windows or Linux with 32 and 64 bits.

3. Call Graph Generation Method

3.1 Framework
AIT uses virtualization technology to generate call graphs. By replacing the first two bytes

of the target function with specific instructions, the kernel control flow traps into the
virtualization space and analyzes the calling relation whenever the target function is called.

Fig. 2. AIT architecture

2088 Jiao et al.: AIT: A method for operating system kernel function call graph generation
with a virtualization technique

The overall architecture of AIT is illustrated in Fig. 2, showing the three levels of hardware,

virtual machine monitor and virtual machine (with the guest OS kernel).
The guest OS runs on an abstract computing platform called a virtual machine (VM). The

middle level, which manages the VM, is called the virtual machine monitor (VMM); this
isolates different VMs and has a higher privilege than the guest OS in VM [24], and can
therefore analyze and monitor the guest OS kernel.

There are three primary modules in AIT: the trap insert, information analysis and
post-processing modules. With the help of the higher privilege provided by the VMM, the trap
insert and information analysis modules can monitor the running guest OS kernel. The
methods of analysis include modifying kernel instructions and acquiring kernel data and
register values. By modifying the kernel instructions, the trap insert module can insert special
instructions into the kernel space that form the kernel trap in the guest OS kernel, and trigger
the trap handler at a specific time. In the trap handler, the information analysis module
determines the function calling information based on the trap and kernel information. Using
this information, the information analysis module provides detailed trap control information
for the trap insert module. The data and control flow between the trap insert module, the kernel
trap instructions and the information analysis module allows for the complete analysis of
function calling information. The information analysis module also provides calling
information for the post-processing module, which stores the information with a specific
structure and handles the duplication issue.

AIT realizes the main functions in VMM rather than the guest OS, and thus the
implementation of AIT does not have a close relation with the guest OS as in existing
generation methods. In this paper, the open-source project XEN [25] is used to realize AIT.
The details of each primary module are described in Sections 3.1 to 3.4.

3.2. Trap Insert

3.2.1. Principles
Using virtualization technology, a trap mechanism is proposed to address various special

events such as page faults and interrupts. More specifically, special "trap instructions'' such as
0xcc (int3) trigger the trap handler. In the trap handler, the VM and guest OS are paused, and
the VMM obtains the control flow and permission to read and write the data or instructions
into the kernel space of the guest OS. Using this mechanism, AIT inserts "trap instructions''
into important areas of the guest OS kernel, and when the kernel control flow reaches these
areas, AIT can pause the guest OS and analyze it.

In this implementation, in order to ensure the normal operation of VM, AIT inserts the trap
instruction 0xcc to trigger the trap handler and restore the primeval kernel instruction after
kernel analysis in the trap handler. Thus, for a target instruction address AT to be analyzed,
AIT saves the primeval instruction AC and replaces it with 0xcc. When the kernel instruction
flow reaches AT , 0xcc will be executed and causes the int3 trap. In the int3 trap handler, the
information analysis module will complete the analysis, and AC will be replaced with AT ,
after which the guest OS runs normally.

Since the int3 trap mechanism is created by the virtualization framework and the only
modification to the guest OS is the replacement of the original code with 0xcc, the trap insert
module does not have a significant relationship with the guest OS, providing a high level of
compatibility with different OSs.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 5, May 2020 2089

3.2.2. Implementation
In the open-source hardware virtualization project XEN, the functions

hvm_copy_from_guest_virt and hvm_copy_to_guest_virt are provided for reading and
writing data in the kernel space of the guest OS. Based on the information presented above,
trap insert module in AIT inserts and manages the trap instructions.

In this module, each trap instruction contains two bytes. The first byte is 0xcc, which
causes the int3 trap, as described above. The second byte marks this type of trap, as shown in
Table 1. When a trap occurs, the information analysis and trap insert modules will perform
different types of analysis based on the value of the second byte.

Table 1. Type of trap instruction

Value Description
0x00 Trap in the head of the function
0x01 Trap next to the head of the function
0x02 Trap in the calling instruction
0x03 Trap next to the calling instruction
0x04 Trap in the return instruction
0x05 Trap in the debug address
0x06 Trap in the dynamic calling instruction
0x07 Trap next to the dynamic calling instruction

For each inserted trap instruction, the trap insert module stores the first two bytes and the

address of the target code before replacing them with a suitable trap instruction. Following this,
when the instruction flow reaches the target address, the 0xcc will cause the int3 trap, and the
trap handler in VMM will be executed to deal with the calling information analysis.

AIT needs a function header address as a "starting point''. This address is entered as a
parameter when AIT is started, and can be obtained from the operating system kernel symbol
table or kernel debugging. The header addresses for the rest of the functions can be found
automatically from the information analysis module.

After analyzing the calling information, in order to ensure the guest OS can run properly,
the replaced instruction must be restored to the stored primeval code. However, in the case of
multiple calling relations, the trap instruction should be maintained in order to continue the
process of acquiring calling information. A method called "cross-replacing'' is used for this
purpose in AIT.

We assume that in function A, the first instruction is C1, and the second is C2. The
primeval instructions C1 and C2 are first stored as a back-up and C1 is then replaced with
0xcc00, which means this trap is in the head of the function (this is usually the first instruction).
After analyzing the information, 0xcc00 is replaced with C1 and C2 is set to 0xcc01, meaning
that this trap is next to the head of the function (usually the second instruction). Thus, when the
guest OS is resumed, code C1 will also be executed, and a trap is placed at 0xcc01. Finally,
0xcc01 is restored back to C2 and 0xcc00 to C1; the guest OS can then run while the trap
remains in the head of the function. Type value 0x01, 0x03 and 0x07 in Table 1 is in charge of
"cross-replacing''.

It should be noted that each trap instruction holds two bytes in the guest OS kernel space; if
the instruction C1 is shorter than 2 bytes, then 0xcc00 will cover two instructions. Thus, when
0xcc01 is restored back to C2 and replace C1 as 0xcc00, the first byte of C2 will still be

2090 Jiao et al.: AIT: A method for operating system kernel function call graph generation
with a virtualization technique

replaced as 00 by 0xcc00. As a result, cross-replacing must be executed between the first
instruction C1 and the third instruction C3. In order to confirm the length of each instruction in
the kernel space, a simple disassembling function is added to the trap insert module in order to
test the length of the assembly instruction.

3.3. Information Analysis

3.3.1. Principles
In virtualization technology, the VMM is responsible for providing an abstract hardware

platform, meaning that the VMM controls the hardware utilized by VM, including the
registers and RAM. Hence, the VMM has the highest permission to read and write data in the
guest OS kernel space. Based on this authority, AIT analyzes the information in the kernel
space during trap handling.

The information analysis module mainly deals with two targets, the calling instruction
address and the function header address. As mentioned in Section 3.2.1, the trap insert module
is responsible for inserting the trap instructions into the target address to create the int3 trap.
For a target function AF , the function header is denoted by AH ; if a trap takes place in AH ,

AF is called via a calling instruction BC , and the address of 1BC + (the next instruction after

BC) is stored on the top of the stack. Thus, the information analysis module will acquire the
pair (),B AC H by analyzing the register and the kernel stack.

If the calling instruction BC belongs to the function BF , then BF also needs to be analyzed
to complete the entire call graph. In normal circumstances, a function header can be easily
analyzed with the help of the OS kernel symbol table. To ensure compatibility with certain
OSs that do not provide a kernel symbol table, AIT provides a special method for locating the
function header. The information analysis module finds the return instruction BR from BC
and instructs the trap insert module to set a trap instruction there. When a trap occurs in BR ,
which means function BF will return to its caller function CF , the return address (the address
of 1CC +) is stored on the top of the stack. The calling instruction CC can be found from 1CC + ,
and CC carries the information of the BF header address BH . By following these steps, the
relation pair is acquired as (),B BH C .

The complete information analysis relation is shown in Fig. 3. The arrows show the
call/return direction of the instruction flow, the solid line shows the process of analysis of the
pair (),B AC H , and the dotted line shows the process of analysis of the pair (),B BH C . The
complete calling relation between AF and BF is acquired by combining these two relation
pairs as () ()(), ,A A B B BF H F H C ; this means that function BF (starting from header BH) uses
instruction BC to call function BF (starting from header AH).

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 5, May 2020 2091

Fig. 3. Information analysis relations

3.3.2. Implementation
In the open-source hardware virtualization project XEN, the int3 trap is processed in the

function vmx_vmexit_handler, which is rewritten to realize the information analysis module.
As described in Section 3.3.1, the purpose of the information analysis module is to acquire

the calling relation pairs of the target function. This module consists of two main parts: calling
relation analysis and trap instruction control.

The calling relation analysis is responsible for acquiring calling relation pairs, such as
(),B AC H and (),B BH C , as described in Section 3.2.2. The VMM has the highest level of
privilege, so the kernel data can be read using the function hvm_copy_from_guest_virt, and
the register can be read using function __vmread and regs structure.

In the information analysis module, the functions that need to be analyzed are stored in a
function array containing the function header address. The steps involved in a typical analysis
are as follows.

(1) The information analysis module instructs the trap insert module to insert the trap
instruction into the target functions ()1 2, , , nF F FL using the "trap in head of function'' type;

(2) When the trap takes place in the head of the function AF , the caller instruction BC can
be found by analyzing the ESP register and the kernel stack data;

(3) In order to find the header address BH of BF , the information analysis module finds
the return instruction (0xc3 or 0xc2) from BC and instructs the trap insert module to insert a
trap instruction of the "Trap in return instruction'' type;

(4) When a trap occurs in the return instruction, the caller instruction CC can be found by
analyzing the ESP register and the kernel stack data;

(5) By analyzing CC , the header address BH of BF can be found and added into the
function table. Finally, the analysis module moves to the next target function.

By following these steps, a multi-level call graph can be generated from a single root
function. Fig. 3 in Section 3.2.2 shows the relations between the symbols, and Fig. 4 shows
how the call graph can be generated. When the analysis of a new target function is complete,
the new function is added into the call graph (shown as a dashed box in each step), where the
arrow shows the calling direction. It should be noted that the termination condition of the
above automated generation process is that no new function call relationship is found within
the timeout period.

2092 Jiao et al.: AIT: A method for operating system kernel function call graph generation
with a virtualization technique

Fig. 4. Call graph generation process

There are two problems that require special attention in the abovementioned steps. Firstly,

for some functions with a branch structure, there may be several return instructions (0xc3 or
0xc2) in the function; however, only one will be executed when the function returns. Thus, in
Step 3, all of the return instructions in the function need to be found to ensure that the trap will
occur when the function returns. The information analysis module therefore searches all the
return instructions after BC by traversing the instruction flow, including the return
instructions in the branch structure. It is worth noting that some special functions will not
follow the direction of the increasing address, and may jump to a lower address. Thus, the
search for the return instruction should not only follow the address direction, but also each
jump operation.

In practice, since kernel instructions are stored as assembly instructions, not all functions
will have an obvious dividing mark such as 0xcccccc, making it hard to judge the end of the
function. In this case, the return instruction is found via the following steps:

(1) Find the first return instruction 1R from BC , and insert the trap instruction in 1R and

BC ;
(2) Keep the guest OS running, and wait for a trap to occur;
(3) If the next trap occurs in ()1,2,3,nR n = L , meaning that the return operation is

captured, find the calling instruction CC , as mentioned above;
(4) If the next trap occurs in BC , meaning that the return operation has been missed, find

the next return instruction 1mR + from mR onwards (mR is the final return instruction which
has been found); then insert the trap instruction in 1mR + and return to Step 2.

Second, in Step 5, the calling instruction CC that carries the information about BH may be
of different types (Table 2 shows some examples of types of calling instruction).

In some calling instructions, the calling target may be stored statically or may change while
the guest OS is running. This means that the target address can only be determined as the
calling instruction is being executed. In order to obtain the real calling target address from the
calling instruction, a trap instruction is inserted into this calling instruction (CC) with the "trap
in dynamic calling instruction'' symbol (0x06 in Table 1). When a trap of this type occurs, the
information analysis module will record the value of the real calling target address.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 5, May 2020 2093

Meanwhile, for certain dynamic calling instructions such as call eax, the target calling
address may change when the instruction is executed; however, only one target address is the
real header address BH . Thus, all feasible target addresses are collected when the "trap in
dynamic calling instruction'' trap occurs. In consideration of the real header address, BF must
be in front of BC , and the most probable target address is selected, which is located before but
closest to BC as the final header address of BF .

Table 2. Examples of calling instructions

Calling instruction Meaning
0xff15+4bytes address Call [4bytes address]

0xff5348 Call [ebx+0x48]
0xff55ec Call [ebp-0x14]
0xffd7 Call edi
0xffd0 Call eax
0xff10 Call [eax]
0xffd3 Call ebx
0xffd1 Call ecx

3.4. Post-Processing

3.4.1. Principles
The function calling information provided by the information analysis module is stored as
() ()(), ,A A B B BF H F H C . Since AH can represent AF , and BH can represent BF , the

information structure can be rewritten in the form of triples (), ,A B BH C H containing the
complete calling information of one function calling operation, i.e. the header address AH of
the callee function, the calling instruction address BC and the caller header address BH , as
shown in the image marked Simple 1 in Fig. 5.

However, for complete analysis processing, the information analysis module will provide a
number of calling information triples, such as ()1 1 1, ,A B BH C H , ()2 2 2, ,A B BH C H , L ,

(), ,An Bn BnH C H . The post-processing module is in charge of cleaning up this information in
the following ways:

(1) Dropping duplicate triples. If two triples are identical, they describe the same calling
operation at different times, which is very common. Thus, when the information analysis
module creates a calling information triple, the post-processing module first tests whether or
not this triple is new.

(2) Combining the same callee function. For two triples ()1 1 1, ,A B BH C H and

()2 2 2, ,A B BH C H , if 1 2A A AH H H= = , the same function AF is called by different two calling
instructions 1BC and 2BC . Thus, these two triples should be combined as

() ()()1 1 1 2 2, , , ,A B B B BH C H C H , as shown in the Simple 2 scheme in Fig. 5.

(3) Combining the same caller functions. For two triples ()1 1 1, ,A B BH C H and

()2 2 2, ,A B BH C H , if 1 2A A AH H H= = and 1 2B B BH H H= = , the same function AF is called by

2094 Jiao et al.: AIT: A method for operating system kernel function call graph generation
with a virtualization technique

the same function BF via different calling instructions 1BC and 2BC , a situation that will
occur in functions with a branch. Thus, these two triples should be combined as

()()1 1 2 2, , ,A B B BH C C H , as shown in the Simple 3 scheme in Fig. 5.

(4) Combining dynamic calling. For two triples ()1 1 1, ,A B BH C H and ()2 2 2, ,A B BH C H , if

1 2A AH H≠ and 1 2B B BC C C= = , this means that the calling instruction BC is a dynamic call
(like a function pointer), which will call different functions each time according to its
parameter values. Thus, these two triples should be combined as ()()1 2 1 1, , ,A A B BH H C H , as
shown in Simple 4 in Fig. 5.

Fig. 5. Process of generating a call graph

3.4.2. Implementation
As mentioned above, the post-processing module is mainly in charge of combining calling

information based on the calling information triple provided by the information analysis
module.

The calling information triple (), ,A B BH C H is stored in a two-dimensional chain table.
One dimension provides a structure for the information of the callee function, and the other for
the the caller function. The information in each dimension is shown in Tables 3 and 4.

Table 3. Content of the callee function information

Item Content
Header address The header address of this callee funtion

Next header address Address of second instruction
Header instruction First instruction
Second instruction Second instruction

Next callee function Pointer to next callee function information

Table 4. Content of the caller function information
Item Content

Calling instruction address The address of calling instruction
Next calling instruction address Address of instruction next to calling instruction

Header address Header address of this caller function

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 5, May 2020 2095

When the information analysis module provides a new calling information triple
(), ,A B BH C H the post-processing module completes the processing using the following steps:

(1) Traverse the callee function information chain table, and find the node with the header
address AH ;

(2) Traverse the caller function information chain table of AH , and determine whether

BC is in the table; if not, add a new node with calling instruction address BC ;
(3) Traverse the callee function information chain table, and determine whether BH is in

the table; if not, add a new node with header address BH to start finding the parent functions
of BH .

Fig. 6 shows how the link list is built while the information analysis module is running.

Fig. 6. Process of generating the calling information chain table

4. Experimental Results and Analysis
The purpose of this experiment is to verify the correctness of AIT and to determine whether

it is suitable for different OSs. A total of 207 common kernel functions were chosen from
32-bit Windows XP (SP3), 64-bit Windows10 (17134.345) and 64-bit CentOS 7.5, with Linux
3.10.0-862 as the "starting point'' and a timeout of five minutes.

A trusted call graph is needed, meaning that the source code of the testing OS kernel is
requried. Thus, the Windows Research Kernel (WRK) [26] and Linux 3.10.0-862 kernel

2096 Jiao et al.: AIT: A method for operating system kernel function call graph generation
with a virtualization technique

source were downloaded to build a trusted call graph for Windows XP and CentOS 7.5. The
trusted call graph for Windows 10 was built by manual kernel debugging.

The precision rate and recall rate were chosen as evaluation criteria. The precision rate (P)
and recall rate (R) were calculated using the following formulae:

D H

D

F FP
F
∩

= (1)

D H

H

F FR
F
∩

= (2)

where DF is the number of function call behaviors obtained by AIT and HF is the number of
function call behaviors obtained by hand, with the help of the Windows Research Kernel, the
Linux kernel source code and the OS kernel debug tools.

The final results are shown in Table 5 (where ST means the symbol table of the operating
system kernel).

Table 5. Precision and recall results

Operating System FD FH FD∩FH P R
XP SP3 with ST 432 452 432 100% 95.58%

XP SP3 without ST 357 452 357 100% 78.98%
Windows10 with ST 335 351 335 100% 95.44%

Windows10 without ST 247 351 247 100% 70.37%
CentOS 7.5 with ST 379 394 379 100% 96.19%

CentOS 7.5 without ST 285 394 285 100% 72.34%

The results show that the AIT method of call graph generation is suitable for

Windows/Linux OS kernel functions, for both 32- and 64-bit OSs. Moreover, the main
modules of AIT are in the VMM, meaning that the implementation of these modules barely
relates to the guest OS. Thus, when generating different OS kernel function call graphs, the
only aspects which need to be modified are the parameters of AIT, as the lengths of the
variables depend on the version of the OS.

The calculated precision rate for every function is 100%, since the function calling
operation was acquired from the actual execution, meaning that every calling operation that
was discovered was executed during the testing process.

The recall rate was above 95% when a symbol table was available. After rechecking the
missing function calling relations, it was found that AIT did not traverse the entire code space.
Certain special calling instructions will only execute in special cases, such as registry editing
or file downloading, and AIT missed these function calling relations that were not activated.

The recall rate dropped significantly when a symbol table was unavailable. After manual
debugging, several special kernel functions were found that prevent the function information
analysis process in AIT from taking place. These functions mean that AIT cannot get
information such as the function header address in order to start the detection of the calling
relation, as described in Section 3.2.1.

(1) Some functions are designed as an endless loop. For example, ExpWorkerThread is in
charge of managing all of the threads, and has an endless loop to carry out this management,

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 5, May 2020 2097

never returning to its parent function. This will terminate the information analysis process in
Section 3.2.2.

(2) Some functions do not have a return instruction (0xc2 or 0xc3). For example,
HalpApcInterrupt ends in a special way: pushing the real return address A, relevant parameter
and jumping to another instruction address B. Thus when B is complete, the flow will return to
A.

(3) The return instruction in some functions cannot be executed. For example,
nt!PspExitThread makes the kernel switch the thread before the instruction flow come to the
return instruction. This function will also then be interrupted, and the return instruction will
never be executed.

These special functions are mainly written directly in assembly language, and
programmers simplify the instructions for optimizing the OS kernel. These functions do not
follow the standard rules, and the process of analysis of these functions also needs to be
specially designed.

AIT, the method proposed in this paper for generating OS kernel function call graphs, has
the following advantages. Firstly, the call graph generation method relies only on the
mechanism of the function calling process, and does not rely on any other factors except the
processor architecture (apply to mainstream CPUs such as Intel). In comparison with existing
research studies of call graph methods, AIT has a wider range of applications since it relies
only on the source code and a compiler.

Secondly, virtualization technology is used in AIT to analyze the OS kernel, meaning that
the generation method is not relevant to the target OS and does not rely on the OS kernel
architecture or functions. Hence, AIT is compatible with a wider range of OS kernels.

Thirdly, function calling operations are captured by inserting the trap instruction into the
target function header; the parent functions can therefore be acquired easily, which is
important in generating a calling whitelist and in kernel security.

However, certain functions such as those mentioned in Section 4 need to be resolved in
order to complete the function information acquiring process. In addition, for dynamic calling
(such as call [eax]) in the information analysis module, the real header address is determined
by collecting every feasible target address, as described in Section 3.3. In some cases, the
target function may never be called during the process of information collection, meaning that
AIT cannot obtain the real header address and may provide an incorrect header.

Table 6. Functional comparison of results

Generation method/tools WinDbg GDB Ftrace Systemtap Pin Perf AIT
Not dependent on the compiler √ √ × √ √ √ √
Not dependent on the OS type √ √ √ × √ √ √

Available for OS kernel function √ √ √ √ × √ √
Not dependent on kernel stack

backtracking √ √ √ √ √ × √

Not dependent on manual debugging × × √ √ √ √ √

5. Conclusions
This paper presents an operating system kernel function call graph generation method

called Acquire in Trap (AIT), which generates function calling relations for OS kernels by
using virtualization technology to insert trap instructions with different symbols into the

2098 Jiao et al.: AIT: A method for operating system kernel function call graph generation
with a virtualization technique

important address, and finishes the analysis work in the trap handler to analyze the function
calling relations.

Compared with other generation methods proposed in various research studies, AIT is
independent of the source code, compiler or OS kernel architecture, allowing for a wide range
of applications. The experimental results show that AIT can acquire the OS kernel function
calling relations and the function header address information to build the OS kernel functions,
resulting in a precision rate of 100% and a recall rate of 87.5%, and is compatible with x86/x64
architectures for both Linux and Windows OS.

Future studies will first focus on extending the practical scope of application of AIT, such
as to macOS and FreeBSD. The detection of kernel-level malicious behavior will then be
studied based on AIT.

References
[1] O. S. Hofmann, A. M. Dunn, S. Kim, I. Roy, and E. Witchel, "Ensuring operating system

kernel integrity with OSck," ACM SIGPLAN Notices, vol. 46, no. 3, pp. 279-290, 2011.
Article (CrossRef Link)

[2] S. Eresheim, R. Luh, and S. Schrittwieser, "The evolution of process hiding techniques in
malware-current threats and possible countermeasures," Journal of Information Processing,
vol. 25 no.1, pp. 866-874, 2017. Article (CrossRef Link)

[3] A. Singh and K. Chatterjee, "Cloud security issues and challenges: A survey," Journal of
Network and Computer Applications, vol. 79, pp. 88-115, 2017. Article (CrossRef Link)

[4] C. Cui, Y. Wu, Y. Li, et al., "Lightweight intrusion detection of rootkit with VMI-based driver
separation mechanism," KSII Transactions on Internet & Information Systems, vol. 11, no.3,
pp. 1722-1741, 2017. Article (CrossRef Link)

[5] R. Patil and C. Modi, "An exhaustive survey on security concerns and solutions at different
components of virtualization," ACM Computing Surveys, vol. 52, no. 1, p. 12, 2019.
Article (CrossRef Link)

[6] P. Bhat and K. Dutta, "A survey on various threats and current state of security in Android
platform," ACM Computing Surveys, vol. 52, no. 1, p. 21, 2019. Article (CrossRef Link)

[7] R. Luh, H. Janicke, and S. Schrittwieser, "AIDIS: Detecting and classifying anomalous
behavior in ubiquitous kernel processes," Computers & Security, vol. 84, pp. 120-147, 2019.
Article (CrossRef Link)

[8] A. Arusoaie, S. Ciobâca, V. Craciun, et al., "A comparison of open-source static analysis tools
for vulnerability detection in C/C++ code," in Proc. of 19th International Symposium on
Symbolic and Numeric Algorithms for Scientific Computing, Timisoara, Romania, pp. 161-168,
21-24 September 2017. Article (CrossRef Link)

[9] A. Lee, A. Payne , and T. Atkison, "A review of popular reverse engineering tools from a
novice perspective," in Proc. of the International Conference on Software Engineering
Research and Practice, Las Vegas, Nevada, USA, pp. 68-74, 30 July-2 August 2018.
Article (CrossRef Link)

[10] T. R. Toma and M. S. Islam, "An efficient mechanism of generating call graph for Javascript
using dynamic analysis in web application," in Proc. of 2014 International Conference on
Informatics, Electronics & Vision (ICIEV), Dhaka, Bangladesh, pp. 1-6, 23-24 May 2014.
Article (CrossRef Link)

[11] X.-Y. Sun and W.-Y. Zeng, "Research on sequence of function calls based on gprof,"
Microcomputer Information, vol. 26, no. 36, pp. 165-166, 2010. Article (CrossRef Link)

[12] M. Chabbi, X. Liu, and J. Mellor-Crummey, "Call paths for pin tools," in Proc. of Annual
IEEE/ACM International Symposium on Code Generation and Optimization, Orlando, FL,
USA, pp. 76-86, 15-19 February 2014. Article (CrossRef Link)

https://doi.org/10.1145/1961296.1950398
https://doi.org/10.2197/ipsjjip.25.866
https://doi.org/10.1016/j.jnca.2016.11.027
https://doi.org/10.3837/tiis.2017.03.026
https://doi.org/10.1145/3287306
https://doi.org/10.1145/3301285
https://doi.org/10.1016/j.cose.2019.03.015
https://doi.org/10.1109/SYNASC.2017.00035
http://csce.ucmss.com/cr/books/2018/LFS/CSREA2018/SER4171.pdf
https://doi.org/10.1109/ICIEV.2014.6850807
http://en.cnki.com.cn/Article_en/CJFDTOTAL-WJSJ201036068.htm
https://doi.org/10.1145/2544137.2544164

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 5, May 2020 2099

[13] A. Feldthaus, M. Schafer, M. Sridharan, J. Dolby, and F. Tip, "Efficient construction of
approximate call graphs for Javascript IDE services," in Proc. of 2013 35th International
Conference on Software Engineering, CA, USA, pp. 752-761, San Francisco, 18-26 May 2013.
Article (CrossRef Link)

[14] F. Zyulkyarov, T. Harris, O. S. Unsal, A. Cristal, and M. Valero, "Debugging programs that
use atomic blocks and transactional memory," ACM Sigplan Notices, vol. 45, no. 5, pp. 57-66,
2010. Article (CrossRef Link)

[15] SystemTap, "Systemtap wiki," 2019. Article (CrossRef Link)
[16] N. A. Carvalho and J. Pereira, "Measuring software systems scalability for proactive data

center management," in Proc. of On the Move to Meaningful Internet Systems: OTM 2010,
Hersonissos, Crete, Greece, pp. 829-842, 25-29 October, 2010. Article (CrossRef Link)

[17] D. de Oliveira and R. S. de Oliveira, "Comparative analysis of trace tools for real-time Linux,"
IEEE Latin America Transactions, vol. 12, no. 6, pp. 1134-1140, 2014.
Article (CrossRef Link)

[18] R. Jalan and A. Kejariwal, "Trin-trin: Who's calling? A pin-based dynamic call graph
extraction framework," International Journal of Parallel Programming, vol. 40, no. 4, pp.
410-442, 2012. Article (CrossRef Link)

[19] O. Levi, "Pin - A dynamic binary instrumentation tool," 2018. Article (CrossRef Link)
[20] B. Gregg, "Linux performance profiling tool perf," 2018. Article (CrossRef Link)
[21] R. Di Pietro and F. Lombardi, "Virtualization technologies and cloud security: Advantages,

issues, and perspectives," From Database to Cyber Security, Springer, Cham, pp. 166-185,
2018. Article (CrossRef Link)

[22] A. Damodaran, F. Di Troia, C. A. Visaggio, T. H. Austin, and M. Stamp, "A comparison of
static, dynamic, and hybrid analysis for malware detection," Journal of Computer Virology
and Hacking Techniques, vol. 13, no. 1, pp. 1-12, 2017. Article (CrossRef Link)

[23] T.Y. Win, H. Tianfield, and Q. Mair, "Big data based security analytics for protecting
virtualized infrastructures in cloud computing," IEEE Transactions on Big Data, vol. 4, no. 1,
pp. 11-25, 2017. Article (CrossRef Link)

[24] R. K. Barik, R. K.Lenka, K. R. Rao, and D. Ghose, "Performance analysis of virtual machines
and containers in cloud computing," in Proc. of 2016 International Conference on Computing,
Communication and Automation, Noida, India, pp. 1204-1210, 29-30 April, 2016.
Article (CrossRef Link)

[25] C.-T. Yang, J.-C. Liu, C.-H. Hsu, and W.-L. Chou, "On improvement of cloud virtual machine
availability with virtualization fault tolerance mechanism," Journal of Supercomputing, vol.
69, no. 3, pp. 1103-1122, 2014. Article (CrossRef Link)

[26] S. Ribić and A. Salihbegović, "Tiny operating system kernel for education purposes," in Proc.
of 38th International Convention on Information and Communication Technology, Electronics
and Microelectronics, Opatija, Croatia, pp. 700-705, 25-29 May 2015.
Article (CrossRef Link)

https://doi.org/10.1109/ICSE.2013.6606621
https://doi.org/10.1145/1837853.1693463
http://sourceware.org/systemtap/wiki
https://doi.org/10.1007/978-3-642-16949-6_11
https://doi.org/10.1109/TLA.2014.6894011
https://doi.org/10.1007/s10766-012-0193-x
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
http://www.brendangregg.com/linuxperf.html
https://doi.org/10.1007/978-3-030-04834-1_9
https://doi.org/10.1007/s11416-015-0261-z
https://doi.org/10.1109/TBDATA.2017.2715335
https://doi.org/10.1109/CCAA.2016.7813925
https://doi.org/10.1007/s11227-013-1045-1
https://doi.org/10.1109/MIPRO.2015.7160362

2100 Jiao et al.: AIT: A method for operating system kernel function call graph generation
with a virtualization technique

Longlong Jiao received a Master's degree from the School of Information and
Electronics, Beijing Institute of Technology, Beijing, China, in 2013. He is currently
pursuing a Ph.D. at the Information System and Security & Countermeasures
Experimental Center, Beijing Institute of Technology. His current research interests are
computer security and malware detection.

Senlin Luo received B.E. and M.E. degrees from the College of Electrical and
Electronic Engineering, Harbin University of Science and Technology, Harbin, China, in
1992 and 1995, respectively, and a Ph.D. from the School of Information and Electronics,
Beijing Institute of Technology, Beijing, China, in 1998. He is currently a Deputy
Director, Laboratory Director, and Professor of Information System and Security &
Countermeasures Experimental Center, Beijing Institute of Technology. His current
research interests include machine learning, medical data mining, and information
security.

Wangtong Liu received a Bachelor's degree from the School of Information and
Electronics, Beijing Institute of Technology, Beijing, China, in 2013. He is currently
pursuing a Ph.D. at the Information System and Security & Countermeasures
Experimental Center, Beijing Institute of Technology. His current research interests
include operating system security and virtualization security.

Limin Pan received B.E. and M.E. degrees from the College of Electrical and
Electronic Engineering, Harbin University of Science and Technology, Harbin, China.
She is currently working at the Information System and Security & Countermeasures
Experimental Center, Beijing Institute of Technology. Her current research interests
include machine learning, medical data mining, and information security.

