Recently, novel viral infections such as COVID-19 have spread and pose a serious public health problem. In particular, these diseases have a fatal effect on the elderly, threatening life and causing serious social and economic losses. Accordingly, applications such as telemedicine, healthcare, and disease prevention using the Internet of Things (IoT) and artificial intelligence (AI) have been introduced in many industries to improve disease detection, monitoring, and quarantine performance. However, since existing technologies are not applied quickly and comprehensively to the sudden emergence of infectious diseases, they have not been able to prevent large-scale infection and the nationwide spread of infectious diseases in society. Therefore, in this paper, we try to predict the spread of infection by collecting various infection information with regional limitations through a virus disease information collector and performing AI analysis and severity matching through an AI broker. Finally, through the Korea Centers for Disease Control and Prevention, danger alerts are issued to the elderly, messages are sent to block the spread, and information on evacuation from infected areas is quickly provided. A realistic elderly support system compares the location information of the elderly with the information of the infected area and provides an intuitive danger area (infected area) avoidance function with an augmented reality-based smartphone application. When the elderly visit an infected area is confirmed, quarantine management services are provided automatically. In the future, the proposed system can be used as a method of preventing a crushing accident due to sudden crowd concentration in advance by identifying the location-based user density.
Deep learning is used as a creative tool that could overcome the limitations of existing analysis models and generate various types of results such as text, image, and music. In this paper, we propose a method necessary to preprocess audio data using the Niko's MIDI Pack sound source file as a data set and to generate music using Bi-LSTM. Based on the generated root note, the hidden layers are composed of multi-layers to create a new note suitable for the musical composition, and an attention mechanism is applied to the output gate of the decoder to apply the weight of the factors that affect the data input from the encoder. Setting variables such as loss function and optimization method are applied as parameters for improving the LSTM model. The proposed model is a multi-channel Bi-LSTM with attention that applies notes pitch generated from separating treble clef and bass clef, length of notes, rests, length of rests, and chords to improve the efficiency and prediction of MIDI deep learning process. The results of the learning generate a sound that matches the development of music scale distinct from noise, and we are aiming to contribute to generating a harmonistic stable music.
Recently, the demand for the cultivation of upland soil has been increasing, and the rate of conversion of paddy soil into upland soil is also increasing. Theincrease in uneven precipitation due to climate change has resulted in dramatic effects of waterlogging stress on upland crops. Therefore, the present study was conducted to investigate the changes in growth characteristics and the expression patterns of proteins at the two-leaf stage of adzuki beans. The domestic cultivar, Arari (Miryang No. 8), was used to test waterlogging stress. At the two-leaf stage of adzuki beans, plant height slightly decreased androot fresh weight showed significant changes after 3 days of waterlogging treatment. Chlorophyll content was also significantly different after 3 days of waterlogging treatment compared to its content in control plants. Using two-dimensional gel electrophoresis, more than 400 protein spots were identified. Twenty-one differentially expressed proteins from the two-leaf stage were analyzed using linear trap quadrupole-Fourier transform-ion cyclotron resonance mass spectrometry. Of these 21 proteins, 9 were up-regulated and 12 were down-regulated under waterlogging treatment. Protein information resource (https://pir.georgetown.edu/) categories were assigned to all 49 proteins according to their molecular function, cellular component localization, and biological processes. Most of the proteins were found to be involved in the biological process, carbohydrate metabolism and were localized in chloroplasts.
Journal of the Korean Society of Marine Environment & Safety
/
v.28
no.7
/
pp.1231-1237
/
2022
In the present study, the optimization of the main particulars of a ship using AI-based design search techniques was investigated. For the design search techniques, the SHERPA algorithm by HEEDS was applied, and CFD analysis using STAR-CCM+ was applied for the calculation of resistance performance. Main particulars were automatically transformed by modifying the main particulars of the ship at the stage of preprocessing using JAVA script and Python. Small catamaran was chosen for the present study, and the main dimensions of the length, breadth, draft of demi-hull, and distance between demi-hulls were considered as design variables. Total resistance was considered as an objective function, and the range of displaced volume considering the arrangement of the outfitting system was chosen as the constraint. As a result, the changes in the individual design variables were within ±5%, and the total resistance of the optimized hull form was decreased by 11% compared with that of the existing hull form. Throughout the present study, the resistance performance of small catamaran could be improved by the optimization of the main dimensions without direct modification of the hull shape. In addition, the application of optimization using design search techniques is expected for the improvement in the resistance performance of a ship.
Peroxidasin (PXDN), a multidomain heme peroxidase containing extracellular matrix (ECM) motifs, as well as a catalytic domain, catalyzes the sulfilimine crosslink of collagen IV (Col IV) to reinforce Col IV scaffolds. We previously reported that PXDN is required for endothelial cell (EC) survival and growth signaling through sulfilimine crosslink-dependent matrix assembly. In this study, we examined whether peroxidase activity is required for PXDN function in ECs. First, we constructed a mutant PXDN by point mutation of two highly conserved amino acids, Q823 and D826, which are present in the active site of the peroxidase domain. After isolation of HEK293 clones highly expressing the mutant protein, conditioned medium (CM) was obtained after incubating the cells in serum-free medium for 24 hours and then analyzed by Western blot analysis under nonreducing conditions. The results revealed that the mutant PXDN formed a trimer and that it was cleaved by proprotein convertase-like wild-type (WT) PXDN. However, peroxidase activity was not detected in the CM containing the mutant PXDN, in contrast to that of WT PXDN. In addition, the sulfilimine crosslink ability of the mutant PXDN was lost. Moreover, the CM containing the mutant PXDN failed to promote the growth of PXDN-depleted ECs, unlike the CM containing WT PXDN. These results suggest that the peroxidase activity of PXDN affects EC growth by forming a sulfilimine crosslink.
Journal of the Korean Institute of Landscape Architecture
/
v.51
no.4
/
pp.16-30
/
2023
As the concept of metaverse has received great attention, interest in metaverse related to landscape architecture is also increasing. The aim of this research is to understand the potential and tasks of applying metaverse in the field of landscape architecture by analyzing the user experience of a metaverse platform. The object of the research is Meta-Everland built in the Roblox platform, which has the most users among landscape architectural metaverses in Korea. NPS of 30 users who have been to Everalnd was investigated after using Meta-Everland with interviews. NPS before the metaverse experience was -16 and NPS after the experience was -24. This result means that the promotion level was lowered after the experience of the metaverse. There were three causes of lowered NPS: lack of users, low-quality graphics and interface, and lack of content. The factor of lack of users was the result of the other two problems. The factor of low technical quality is hard to be improved in a short period of time. Therefore, the main task to improve the metaverse is developing better metaverse content related to landscape architecture. It is more appropriate to develop metaverse-specific content rather than improve reality issues. Applying AR and VR devices, enhancing communication function, and developing potential as a simulation device are needed to be considered.
Due to the recent and rapid globalization, logistics outsourcing has expanded globally and is seen as a means of creating a robust logistics system. However, many businesses continue to have difficulties with their logistics outsourcing contracts, which compels them to reinstate the logistics function for internal management. This study aims to investigate how organizational capabilities of logistics service providers (LSPs), notably flexibility, integration, innovation, and technological capabilities, impact on the logistics outsourcing success in Ugandan food processing firms. Using a structured questionnaire survey, cross-sectional data collected from 211 food processing firms in Kampala - Uganda were analyzed by partial least squares-structural equation modeling (PLS-SEM) using SmartPLS 3.3.7 software to examine the theorized relationships. The study findings revealed that whereas the technological and innovation capabilities positively and significantly influence logistics outsourcing success, the effects of flexibility and integration capabilities were insignificant. Additionally, the importance-performance map analysis (IPMA) reveals that the technological capability is a priority capability, followed by the innovation capability if logistics outsourcing success is to be achieved. Conversely, flexibility and integration capabilities are of low priority.
The domestic used car market continues to grow along with the used car online platform service. The used car online platform service discloses vehicle specifications, accident history, inspection history, and detailed options to service consumers. Most of the preceding studies were predictions of used car prices using vehicle specifications and some options for vehicles. As a result of the study, it was confirmed that there was a nonlinear relationship between used car prices and some specification variables. Accordingly, the researchers tried to solve the nonlinear problem by executing a Machine Learning model. In common, the Regression based Machine Learning model had the advantage of knowing the actual influence and direction of variables, but there was a disadvantage of low Cost Function figures compared to the Decision Tree based Machine Learning model. This study attempted to predict used car prices of six domestic brands by utilizing both vehicle specifications and vehicle options. Through this, we tried to collect the advantages of the two types of Machine Learning models. To this end, we sequentially conducted a regression based Machine Learning model and a decision tree based Machine Learning model. As a result of the analysis, the practical influence and direction of each brand variable, and the best tree based Machine Learning model were selected. The implications of this study are as follows. It will help buyers and sellers who use used car online platform services to predict approximate used car prices. And it is hoped that it will help solve the problem caused by information inequality among users of the used car online platform service.
The variabilities of precipitation and particulate matters (i.e., PM10 and PM2.5) and the scavenging efficiency of PMs by precipitation were quantified using long-term measurements in Seoul, Korea. The 21 years (2001~2021) measurements of precipitation and PM10 mass concentrations, and the 7 years (2015~2021) of PM2.5 mass concentrations were used. Statistical analysis was performed for each period (i.e., year, season, and month) to identify the long-term variabilities of PMs and precipitation. PM10 and PM2.5 decreased annually and the decreasing rate of PM10 was greater than PM2.5. The precipitation intensity did not show notable variation, whereas the annual precipitation amount showed a decreasing trend. The summer precipitation amount contributed 61.10% to the annual precipitation amount. The scavenging efficiency by precipitation was analyzed based on precipitation events separated by 2-hour time intervals between hourly precipitation data for 7 years. The scavenging efficiencies of PM10 and PM2.5 were quantified as a function of precipitation characteristics (i.e., precipitation intensity, amount, and duration). The calculated average scavenging efficiency of PM10 (PM2.5) was 39.59% (35.51%). PM10 and PM2.5 were not always simultaneously scavenged due to precipitation events. Precipitation events that simultaneously scavenged PM10 and PM2.5 contributed 42.24% of all events, with average scavenging efficiency of 42.93% and 43.39%. The precipitation characteristics (i.e., precipitation intensity, precipitation amount, and precipitation duration) quantified in these events were 2.42 mm hr-1, 15.44 mm, and 5.51 hours. This result corresponds to 145% (349%; 224%) of precipitation intensity (amount; duration) for the precipitation events that do not simultaneously scavenge PM10 and PM2.5.
Journal of the korean academy of Pediatric Dentistry
/
v.50
no.2
/
pp.229-238
/
2023
The objective of this study was to investigate trends in ankyloglossia and its surgical treatment among pediatric patients in South Korea from 2011 to 2020. Data from Health Insurance Review and Assessment Service (HIRA)'s Healthcare Bigdata Hub were used for analysis of the ankyloglossia diagnosis rate and frenum surgery rate. Considering annual population change, crude rates per 100,000 were calculated and analyzed. To investigate other factors of frenum surgery incidence besides gender and age, pediatric patient sample data from HIRA were used. The diagnosis rate of ankyloglossia increased from 204.4 in 2011 to 356.6 per 100,000 people in 2020, while the frenum surgery rate increased from 26.8 to 34.3 per 100,000 people. Males were more likely to receive frenum surgery than females. Surgeries were more likely to be done at a hospital instead of a clinic or a general hospital. In the age group of 0 - 4 years, the largest number of frenum surgeries were performed in pediatrics, and in the age group of 5 - 9 years, the largest number of surgeries were conducted in pediatric dentistry. In the older age groups, the largest proportion of frenum surgeries were performed in the departments of conservative dentistry and oral and maxillofacial surgery. The diagnosis of ankyloglossia and the operation of frenum surgery among South Korean children increased during the last decade. Since the function of the tongue can affect maxillofacial development in many aspects, pediatric dentists should pay more attention to the functional management of intraoral soft tissue in growing children.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.