• Title/Summary/Keyword: Fully-depleted

Search Result 52, Processing Time 0.028 seconds

A Self-Consistent Analytic Threshold Voltage Model for Thin SOI N-channel MOSFET

  • Choi, Jin-Ho;Song, Ho-Jun;Suh, Kang-Deog;Park, Jae-Woo;Kim, Choong-Ki
    • Proceedings of the KIEE Conference
    • /
    • 1990.11a
    • /
    • pp.88-92
    • /
    • 1990
  • An accurate analytical threshold model is presented for fully depleted SOI which has a Metal-Insulator-Semiconductor-Insulator-Metal structure. The threshold voltage is defined as the gate voltage at which the second derivative of the inversion charge with respect to the gate voltage is maximum. Therefore the model is self-consistent with the measurement scheme. Numerical simulations show good agreement with the model with less than 3% error.

  • PDF

Memory Characteristics of 1T-DRAM Cell by Channel Structure (채널 구조에 따른 1T-DRAM Cell의 메모리 특성)

  • Jang, Ki-Hyun;Jung, Seung-Min;Park, Jin-Kwon;Cho, Won-Ju
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.2
    • /
    • pp.96-99
    • /
    • 2012
  • We fabricated fully depleted (FD) SOI-based 1T-DRAM cells with planar channel or recessed channel and the electrical characteristics were investigated. In particular, the dependence of memory operating mode on the channel structure of 1T-DRAM cells was evaluated. As a result, the gate induced drain leakage current (GIDL) mode showed a better memory property for planar type 1T-DRAM. On the other hand, the impact ionization (II) mode is more effective for recessed type.

A Device Parameter Extraction Method for Thin Film SOI MOSFETs (얇은 박막 SOI (Silicon-On-Insulator) MOSFET 에서의 소자 변수 추출 방법)

  • Park, Sung-Kye;Kim, Choong-Ki
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.820-824
    • /
    • 1992
  • An accurate method for extracting both Si film doping concentration and front or back silicon-to-oxide fixed charge density of fully depleted SOI devices is proposed. The method utilizes the current-to-voltage and capacitance-to-voltage characteristics of both SOI NMOSFET and PMOSFET which have the same doping concentration. The Si film doping concentration and the front or back silicon-to-oxide fixed charge density are extracted by mainpulating the respective threshold voltages of the SOI NMOSFET and PMOSFET according to the back surface condition (accumulation or inversion) and the capacitance-to-voltage characteristics of the SOI PMOSFET. Device simulations show that the proposed method has less than 10% errors for wide variations of the film doping concentration and the front or the back silicon-to-oxide fixed charge density.

  • PDF

Fabrication of Sub-100nm FD SOI nMOSFET using Silicon thin-body (Silicon Thin-body를 이용한 100nm 이하 SOI-NMOSFET에서의 제작)

  • 양종헌;백인복;오지훈;안창근;조원주;이성재;임기주
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.707-710
    • /
    • 2003
  • 10nm 이하의 두께를 갖는 얇은 SOI 층 위에서 우수한 동작 특성을 보이는 Fully-Depleted SOI nMOSFET 을 제작하였다. 게이트의 길이가 큰 경우에는 SOI 층이 얇지 않아도 좋은 특성을 보이지만, 게이트 길이가 100nm 이하에서는 Short Channel Effect 에 의한 특성 열화 때문에 SOI thin body 의 두께가 게이트 길이에 따라 같이 얇아져야 한다. [1] 100nm 게이트 길이 SOI-NMOSFET에서 10nm 이하 body 두께에 따라 Vth는 조금 상승했고, Subthreshold slope은 조금 개선되는 특성을 보였다. 또한, 45nm 게이트 길이와 3nm 로 추정되는 body 두께를 갖는 nMOSFET 에서 우수한 I-V 동작 특성을 얻었다.

  • PDF

A New Asymmetric SOI Device Structure for High Current Drivability and Suppression of Degradation in Source-Drain Breakdown Voltage (전류구동 능력 향상과 항복전압 감소를 줄이기 위한 새로운 비대칭 SOI 소자)

  • 이원석;송영두;정승주;고봉균;곽계달
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.918-921
    • /
    • 1999
  • The breakdown voltage in fully depleted SOI N-MOSFET’s have been studied over a wide range of film thicknesses, channel doping, and channel lengths. An asynmmetric Source/Drain SOI technology is proposed, which having the advantages of Normal LDD SOI(Silicon-On-Insulator) for breakdown voltage and gives a high drivability of LDD SOI without sacrificings hot carrier immunity The two-dimensional simulations have been used to investigate the breakdown behavior in these device. It is found that the breakdown voltage(BVds) is almost same with high current drivability as that in Normal LDD SOI device structure.

  • PDF

Highly Scalable NAND Flash Memory Cell Design Embracing Backside Charge Storage

  • Kwon, Wookhyun;Park, In Jun;Shin, Changhwan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.2
    • /
    • pp.286-291
    • /
    • 2015
  • For highly scalable NAND flash memory applications, a compact ($4F^2/cell$) nonvolatile memory architecture is proposed and investigated via three-dimensional device simulations. The back-channel program/erase is conducted independently from the front-channel read operation as information is stored in the form of charge at the backside of the channel, and hence, read disturbance is avoided. The memory cell structure is essentially equivalent to that of the fully-depleted transistor, which allows a high cell read current and a steep subthreshold slope, to enable lower voltage operation in comparison with conventional NAND flash devices. To minimize memory cell disturbance during programming, a charge depletion method using appropriate biasing of a buried back-gate line that runs parallel to the bit line is introduced. This design is a new candidate for scaling NAND flash memory to sub-20 nm lateral dimensions.

A Study on Threshold Voltage and I-V Characteristics by considering the Short-Channel Effect of SOI MOSFET (SOI MOSFET의 단채널 효과를 고려한 문턱전압과 I-V특성 연구)

  • 김현철;나준호;김철성
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.8
    • /
    • pp.34-45
    • /
    • 1994
  • We studied threshold voltages and I-V characteristics. considering short channel effect of the fully depleted thin film n-channel SOI MOSFET. We presented a charge sharing model when the back surface of short channel shows accumulation depletion and inversion state respectively. A degree of charge sharing can be compared according to each of back-surface conditions. Mobility is not assumed as constant and besides bulk mobility both the mobility defined by acoustic phonon scattering and the mobility by surface roughness scattering are taken into consideration. I-V characteristics is then implemented by the mobility including vertical and parallel electric field. kThe validity of the model is proved with the 2-dimensional device simulation (MEDICI) and experimental results. The threshold voltage and charge sharing region controlled by source or drain reduced with increasing back gate voltage. The mobility is dependent upon scattering effect and electric field. so it has a strong influence on I-V characteristics.

  • PDF

Design and Fabrication of Super Junction MOSFET Based on Trench Filling and Bottom Implantation Process

  • Jung, Eun Sik;Kyoung, Sin Su;Kang, Ey Goo
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.964-969
    • /
    • 2014
  • In Super Junction MOSFET, Charge Balance is the most important issue of the trench filling Super Junction fabrication process. In order to achieve the best electrical characteristics, the N type and P type drift regions must be fully depleted when the drain bias approaches the breakdown voltage, called Charge Balance Condition. In this paper, two methods from the fabrication process were used at the Charge Balance condition: Trench angle decreasing process and Bottom implantation process. A lower on-resistance could be achieved using a lower trench angle. And a higher breakdown voltage could be achieved using the bottom implantation process. The electrical characteristics of manufactured discrete device chips are compared with those of the devices which are designed of TCAD simulation.

A SiGe HBT of Current Gain Modulation By using Passivation Ledge (Passivation Ledge를 이용한 SiGe HBT의 Current Gain Modulation)

  • You, Byoung-Sung;Cho, Hee-Yup;Ku, Youn-Seo;Ahn, Chul
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.771-774
    • /
    • 2003
  • Passivation Ledge's device is taken possession on one-side to the Emitter in this Paper. contact used in this paper Pt as Passivation Ledge of device to use Schottky Diode which has leitmotif, It is accomplished Current Modulation that we wish to do purpose using this device. Space Charge acts as single device which is becoming Passivation to know this phenomenon. This device becomes floating as well as Punched-through. V$_{L}$ (Voltage for Ledge) = - 0.5V ~ 0.5V variable values , PD(Partially Depleted ; Λ>0), as seeing FD(Fully Depleted ; A = 0) maximum electric current gains and Gummel Plot of I-V characteristics (V$_{L}$ = 0.1/ V$_{L}$ = -0.1 ). Becomming Degradation under more than V$_{L}$ = 0.1 , less than V$_{L}$ =-0.05 and Maximum Gain(=98.617076 A/A) value in the condition V$_{L}$ = 0.1. A Change of Modulation is electric current gains by using Schottky Diode and Extrinsic Base PN Diode of Passivation Ledge to Emitter Depletion Layer in HBT of Gummel-Poon I-V characteristics and the RF wide-band electric current gains change the Modulation of CE(Common-Emitter) amplifier description, and it had accomplished Current Gain Modulation by Ledge Bias that change in high frequency and wide bands. wide bands.s.

  • PDF

A Unified Analytical One-Dimensional Surface Potential Model for Partially Depleted (PD) and Fully Depleted (FD) SOI MOSFETs

  • Pandey, Rahul;Dutta, Aloke K.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.11 no.4
    • /
    • pp.262-271
    • /
    • 2011
  • In this work, we present a unified analytical surface potential model, valid for both PD and FD SOI MOSFETs. Our model is based on a simplified one dimensional and purely analytical approach, and builds upon an existing model, proposed by Yu et al. [4], which is one of the most recent compact analytical surface potential models for SOI MOSFETs available in the literature, to improve its accuracy and remove its inconsistencies, thereby adding to its robustness. The model given by Yu et al. [4] fails entirely in modeling the variation of the front surface potential with respect to the changes in the substrate voltage, which has been corrected in our modified model. Also, [4] produces self-inconsistent results due to misinterpretation of the operating mode of an SOI device. The source of this error has been traced in our work and a criterion has been postulated so as to avoid any such error in future. Additionally, a completely new expression relating the front and back surface potentials of an FD SOI film has been proposed in our model, which unlike other models in the literature, takes into account for the first time in analytical one dimensional modeling of SOI MOSFETs, the contribution of the increasing inversion charge concentration in the silicon film, with increasing gate voltage, in the strong inversion region. With this refinement, the maximum percent error of our model in the prediction of the back surface potential of the SOI film amounts to only 3.8% as compared to an error of about 10% produced by the model of Yu et al. [4], both with respect to MEDICI simulation results.