• Title/Summary/Keyword: Fully porous

Search Result 96, Processing Time 0.026 seconds

CONSEQUENCE OF BACKWARD EULER AND CRANK-NICOLSOM TECHNIQUES IN THE FINITE ELEMENT MODEL FOR THE NUMERICAL SOLUTION OF VARIABLY SATURATED FLOW PROBLEMS

  • ISLAM, M.S.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.19 no.2
    • /
    • pp.197-215
    • /
    • 2015
  • Modeling water flow in variably saturated, porous media is important in many branches of science and engineering. Highly nonlinear relationships between water content and hydraulic conductivity and soil-water pressure result in very steep wetting fronts causing numerical problems. These include poor efficiency when modeling water infiltration into very dry porous media, and numerical oscillation near a steep wetting front. A one-dimensional finite element formulation is developed for the numerical simulation of variably saturated flow systems. First order backward Euler implicit and second order Crank-Nicolson time discretization schemes are adopted as a solution strategy in this formulation based on Picard and Newton iterative techniques. Five examples are used to investigate the numerical performance of two approaches and the different factors are highlighted that can affect their convergence and efficiency. The first test case deals with sharp moisture front that infiltrates into the soil column. It shows the capability of providing a mass-conservative behavior. Saturated conditions are not developed in the second test case. Involving of dry initial condition and steep wetting front are the main numerical complexity of the third test example. Fourth test case is a rapid infiltration of water from the surface, followed by a period of redistribution of the water due to the dynamic boundary condition. The last one-dimensional test case involves flow into a layered soil with variable initial conditions. The numerical results indicate that the Crank-Nicolson scheme is inefficient compared to fully implicit backward Euler scheme for the layered soil problem but offers same accuracy for the other homogeneous soil cases.

Numerical Discussion on Natural Convection in Soils (지반내 자연대류에 대한 수치해석적 논의)

  • Shin, Hosung
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.2
    • /
    • pp.35-47
    • /
    • 2017
  • Thermal behavior of soils is mainly focused on thermal conduction, and the study of natural convection is very limited. Increase of soil temperature causes natural convection due to buoyancy from density change of pore water. The limitations of the analysis using fluid dynamics for natural convection in the porous media is discussed and a new numerical analysis is presented for natural convection in porous media using THM governing equations fully coupled in the macroscopic view. Numerical experiments for thermal probe show increase in the uncertainty of thermal conductivity estimated without considering natural convection, and suggest appropriate experimental procedures to minimize errors between analytical model and numerical results. Burial of submarine power cable should not exceed the temperature changes of $2^{\circ}C$ at the depth of 0.2 m under the seabed, but numerical analysis for high permeable ground exceeds this criterion. Temperature and THM properties of the seafloor are important design factors for the burial of power cable, and in this case effects of natural convection should be considered. Especially, in the presence of heat sources in soils with high permeability, natural convection due to the variation of density of pore water should be considered as an important heat transfer mechanism.

Embedding Cobalt Into ZIF-67 to Obtain Cobalt-Nanoporous Carbon Composites as Electrode Materials for Lithium ion Battery

  • Zheng, Guoxu;Yin, Jinghua;Guo, Ziqiang;Tian, Shiyi;Yang, Xu
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.458-464
    • /
    • 2021
  • Lithium ion batteries (LIBs) is a kind of rechargeable secondary battery, developed from lithium battery, lithium ions move between the positive and negative electrodes to realize the charging and discharging of external circuits. Zeolitic imidazolate frameworks (ZIFs) are porous crystalline materials in which organic imidazole esters are cross-linked to transition metals to form a framework structure. In this article, ZIF-67 is used as a sacrificial template to prepare nano porous carbon (NPC) coated cobalt nanoparticles. The final product Co/NPC composites with complete structure, regular morphology and uniform size were obtained by this method. The conductive network of cobalt and nitrogen doped carbon can shorten the lithium ion transport path and present high conductivity. In addition, amorphous carbon has more pores that can be fully in contact with the electrolyte during charging and discharging. At the same time, it also reduces the volume expansion during the cycle and slows down the rate of capacity attenuation caused by structure collapse. Co/NPC composites first discharge specific capacity up to 3115 mA h/g, under the current density of 200 mA/g, circular 200 reversible capacity as high as 751.1 mA h/g, and the excellent rate and resistance performance. The experimental results show that the Co/NPC composite material improves the electrical conductivity and electrochemical properties of the electrode. The cobalt based ZIF-67 as the precursor has opened the way for the design of highly performance electrodes for energy storage and electrochemical catalysis.

Performance Evaluation of OGS-FLAC Simulator for Coupled Thermal-Hydrological-Mechanical Analysis (열-수리-역학적 연계해석을 위한 OGS-FLAC 시뮬레이터의 성능 평가)

  • Park, Dohyun;Park, Chan-Hee
    • Tunnel and Underground Space
    • /
    • v.32 no.2
    • /
    • pp.144-159
    • /
    • 2022
  • The present study developed a sequential approach-based numerical simulator for modeling coupled thermal-hydrological-mechanical (THM) processes in the ground and investigated the computational performance of the coupling analysis algorithm. The present sequential approach linked the two different solvers: an open-source numerical code, OpenGeoSys for solving the thermal and hydrological processes in porous media and a commercial code, FLAC3D for solving the geomechanical response of the ground. A benchmark test of the developed simulator was carried out using a THM problem where an analytical solution is given. The benchmark problem involves the coupled behavior (variations in temperature, pore pressure, stress, and deformation with time) of a fully saturated porous medium which is subject to a point heat source. The results of the analytical solution and numerical simulation were compared and the validity of the numerical simulator was investigated.

Formulation of Fully Coupled THM Behavior in Unsaturated Soil (불포화지반에 대한 열-수리-역학 거동의 수식화)

  • Shin, Ho-Sung
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.3
    • /
    • pp.75-83
    • /
    • 2011
  • Emerging issues related with fully coupled Thermo-Hydro-Mechanical (THM) behavior of unsaturated soil demand the development of a numerical tool in diverse geo-mechanical and geo-environmental areas. This paper presents general governing equations for coupled THM processes in unsaturated porous media. Coupled partial differential equations are derived from three mass balances equations (solid, water, and air), energy balance equation, and force equilibrium equation. With Galerkin formulation and time integration of these governing equations, finite element code is developed to find nonlinear solution of four main variables (displacement-u, gas pressure-$P_g$), liquid pressure-$P_1$), and temperature-T) using Newton's iterative scheme. Three cases of numerical simulations are conducted and discussed: one-dimensional drainage experiments (u-$P_g-P_1$), thermal consolidation (u-$P_1$-T), and effect of pile on surrounding soil due to surface temperature variation (u-$P_1$-T).

Synthesis of IZTO(Indium Zinc Tin Oxide) particle by spray pyrolysis and post-heat treatment and characterization of deposited IZTO film

  • Lim, Seong Taek;Kim, Sang Hern
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.4
    • /
    • pp.734-740
    • /
    • 2016
  • The micron-sized indium zinc tin oxide (IZTO) particles were prepared by spray pyrolysis from aqueous precursor solution for indium, zinc, and tin and organic additives such as citric acid (CA) and ethylene glycol (EG) were added to aqueous precursor solution for indium, zinc, and tin. The obtained IZTO particles prepared by spray pyrolysis from the aqueous solution without organic additives had spherical and filled morphologies, whereas the IZTO particles obtained with organic additives had more hollow and porous morphologies. The micron-sized IZTO particles with organic additives were changed fully to nano-sized IZTO particles, whereas the micron-sized IZTO particles without organic additives were not changed fully to nano-sized IZTO particle after post-treatment at $700^{\circ}C$ for 2 hours and wet-ball milling for 24 hours. Surface resistances of micron-sized IZTO's before post-heat treatment and wet-ball milling were much higher than those of nano-sized IZTO's after post-heat treatment and wet-ball milling. From IZTO with composition of 80 wt. % $In_2O_3$, 10 wt. % ZnO, and 10 wt. % $SnO_2$ which showed a smallest surface resistance IZTO after post-heat treatment and wet-ball milling, thin films were deposited on glass substrates by pulsed DC magnetron sputtering, and the electrical and optical properties were investigated.

Study on Low-Temperature Solid Oxide Fuel Cells Using Y-Doped BaZrO3 (Y-doped BaZrO3을 이용한 저온형 박막 연료전지 연구)

  • Chang, Ik-Whang;Ji, Sang-Hoon;Paek, Jun-Yeol;Lee, Yoon-Ho;Park, Tae-Hyun;Cha, Suk-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.9
    • /
    • pp.931-935
    • /
    • 2012
  • In this study, we fabricate and investigate low-temperature solid oxide fuel cells with a ceramic substrate/porous metal/ceramic/porous metal structure. To realize low-temperature operation in solid oxide fuel cells, the membrane should be fabricated to have a thickness of the order of a few hundreds nanometers to minimize IR loss. Yttrium-doped barium zirconate (BYZ), a proton conductor, was used as the electrolyte. We deposited a 350-nm-thick Pt (anode) layer on a porous substrate by sputter deposition. We also deposited a 1-${\mu}m$-thick BYZ layer on the Pt anode using pulsed laser deposition (PLD). Finally, we deposited a 200-nm-thick Pt (cathode) layer on the BYZ electrolyte by sputter deposition. The open circuit voltage (OCV) is 0.806 V, and the maximum power density is 11.9 mW/$cm^2$ at $350^{\circ}C$. Even though a fully dense electrolyte is deposited via PLD, a cross-sectional transmission electron microscopy (TEM) image reveals many voids and defects.

Effects of Powder Melting Degree on Microstructural Features of Plasma Sprayed Y2O3 Coating (플라즈마 제트에서의 분말 용융특성에 따른 Y2O3 코팅층의 미세조직 형성거동)

  • Kang, Sang-Woon;Baik, Kyeong-Ho
    • Korean Journal of Materials Research
    • /
    • v.26 no.5
    • /
    • pp.229-234
    • /
    • 2016
  • In this study, the degree of particle melting in $Y_2O_3$ plasma spraying and its effects on coating characteristics have been investigated in terms of microstructural features, microhardness and scratch resistance. Plasma sprayed $Y_2O_3$ coatings were formed using two different powder feeding systems: a system in which the powder is fed inside the plasma gun and a system in which the powder is fed externally. The internal powder spraying method generated a well-defined lamellae structure that was characterized by a thin porous layer at the splat boundary and microcracks within individual splats. Such micro-defects were generated by the large thermal contraction of splats from fully-molten droplets. The external powder spraying method formed a relatively dense coating with a particulate deposition mode, and the deposition of a higher fraction of partially-melted droplets led to a much reduced number of inter-splat pores and intra-splat microcracks. The microhardness and scratch resistance of the $Y_2O_3$ coatings were improved by external powder spraying; this result was mainly attributed to the reduced number of micro-defects.

Microstructural Evolution of Aluminum Nitride - Yttrium Aluminum Garnet Composite Coatings by Plasma Spraying from Different Feedstock Powders (Aluminum Nitride - Yttrium Aluminum Garnet 분말 특성과 플라즈마 용사 코팅층의 미세조직)

  • So, Woong-Sub;Baik, Kyeong-Ho
    • Korean Journal of Materials Research
    • /
    • v.21 no.2
    • /
    • pp.106-110
    • /
    • 2011
  • A high thermal conductive AlN composite coating is attractive in thermal management applications. In this study, AlN-YAG composite coatings were manufactured by atmospheric plasma spraying from two different powders: spray-dried and plasma-treated. The mixture of both AlN and YAG was first mechanically alloyed and then spray-dried to obtain an agglomerated powder. The spray-dried powder was primarily spherical in shape and composed of an agglomerate of primary particles. The decomposition of AlN was pronounced at elevated temperatures due to the porous nature of the spray-dried powder, and was completely eliminated in nitrogen environment. A highly spherical, dense AlN-YAG composite powder was synthesized by plasma alloying and spheroidization (PAS) in an inert gas environment. The AlN-YAG coatings consisted of irregular-shaped, crystalline AlN particles embedded in amorphous YAG phase, indicating solid deposition of AlN and liquid deposition of YAG. The PAS-processed powder produced a lower-porosity and higher-hardness AlN-YAG coating due to a greater degree of melting in the plasma jet, compared to that of the spray-dried powder. The amorphization of the YAG matrix was evidence of melting degree of feedstock powder in flight because a fully molten YAG droplet formed an amorphous phase during splat quenching.

A Method for Quantitative Measurement of Lateral Flow Immunoassay Using Color Camera (컬러 카메라를 이용한 측면유동 면역 어세이 정량분석 방법)

  • Park, Jongwon
    • Journal of Biomedical Engineering Research
    • /
    • v.35 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • Among semi-quantitative or fully quantitative lateral flow assay readers, an image sensor-based instrument has been widely used because of its simple setup, cheap sensor price, and compact equipment size. For all previous approaches, monochrome CCD or CMOS cameras were used for lateral flow assay imaging in which the overall intensities of all colors were taken into consideration to estimate the analyte content, although the analyte related color information is only limited to a narrow wavelength range. In the present work, we introduced a color CCD camera as a sensor and a color decomposition method to improve the sensitivity of the quantitative biosensor system which utilizes the lateral flow assay successfully. The proposed setup and image processing method were applied to achieve the quantification of imitatively dispensed particles on the surface of a porous membrane first, and the measurement result was then compared with that using a monochrome CCD. The compensation method was proposed in different illumination conditions. Eventually, the color decomposition method was introduced to the commercially available lateral flow immunochromatographic assay for the diagnosis of myocardial infarction. The measurement sensitivity utilizing the color image sensor is significantly improved since the slopes of the linear curve fit are enhanced from 0.0026 to 0.0040 and from 0.0802 to 0.1141 for myoglobin and creatine kinase (CK)-MB detection, respectively.