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ABSTRACT. Modeling water flow in variably saturated, porous media is important in many

branches of science and engineering. Highly nonlinear relationships between water content

and hydraulic conductivity and soil-water pressure result in very steep wetting fronts causing

numerical problems. These include poor efficiency when modeling water infiltration into very

dry porous media, and numerical oscillation near a steep wetting front. A one-dimensional fi-

nite element formulation is developed for the numerical simulation of variably saturated flow

systems. First order backward Euler implicit and second order Crank–Nicolson time discretiza-

tion schemes are adopted as a solution strategy in this formulation based on Picard and Newton

iterative techniques. Five examples are used to investigate the numerical performance of two

approaches and the different factors are highlighted that can affect their convergence and effi-

ciency. The first test case deals with sharp moisture front that infiltrates into the soil column.

It shows the capability of providing a mass-conservative behavior. Saturated conditions are not

developed in the second test case. Involving of dry initial condition and steep wetting front are

the main numerical complexity of the third test example. Fourth test case is a rapid infiltration

of water from the surface, followed by a period of redistribution of the water due to the dynamic

boundary condition. The last one-dimensional test case involves flow into a layered soil with

variable initial conditions. The numerical results indicate that the Crank–Nicolson scheme is

inefficient compared to fully implicit backward Euler scheme for the layered soil problem but

offers same accuracy for the other homogeneous soil cases.

1. INTRODUCTION

The accurate numerical simulation of water flow through soils is an important environmental

problem and has applications in various fields including industrial, hydrological and agricul-

tural engineering, waste and water management, ground water engineering, chemical contam-

inants tracing, and rainfall–runoff modeling. For some cases, soil profiles can be considered

homogenous but in most cases, soil profiles are heterogeneous and can consist of distinct soil
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layers. Vertical water flow through a one dimensional variably saturated soil profile is described

by Richards’ equation and it can be written in the following form:

S(ψ)
∂ψ

∂t
=

∂

∂z

(
K(ψ)

(
∂ψ

∂z
+ 1

))
(1.1)

where, ψ is the pressure head [L], t is time [T ], z denotes the vertical distance from the soil

surface downward [L], K(ψ is the hydraulic conductivity [LT−1] (K(ψ) = Kr(ψ)Ks, Kr and

Ks are the relative and saturated hydraulic conductivity respectively), S(ψ) = dθ
dψ +

(
θ
φ

)
Ss

is the general storage term, θ is the volumetric water content, ψ dθ
dψ is the specific soil moisture

capacity [L−1], φ is porosity, Ss is specific storage.

Mathematical modeling of fluid flow usually results in systems of highly nonlinear partial

differential equations which are not solvable analytically unless unrealistic and oversimplifying

assumptions are made regarding the attributes, dynamics, and properties of the physical sys-

tems. A variety of numerical models have been proposed on the basis of the finite difference,

finite element, and finite volume methods to simulate flow problems. In particular, a hybrid

numerical scheme based on the Euler implicit method, quasi linearization and uniform Haar

wavelets has been developed for the numerical solutions of highly nonlinear partial differential

equation with Dirichlet’s boundary conditions [1], forward finite difference, quasi-linearisation

process and polynomial differential quadrature method with Dirichlet and Neumann bound-

ary condition [2, 3], Crank–Nicolson finite difference scheme and Haar wavelets for various

types of hyperbolic telegraph equations [4], finite element technique for two point boundary

value problem [5, 6], B-spline differential quadrature method for two-dimensional sine-Gordon

equation with Neumann boundary condition [7].

Low order finite difference method or finite element method [8, 9, 10, 11, 12], mixed-hybrid

finite element [13] and discontinuous Galerkin finite element [14] schemes are usually perform

to spatial discretization of equation (1.1). The simplest numerical technique for solving the

nonlinear Richards’ equation is explicit two-level time discretization approach. This approach

give up a linear system of equations, minimizes storage requisites and on a per time step basis

it represents a least cost opportunity. However, stability constraints for explicit methods are

relatively severe, and therefore for long simulations or for problems which involve fine spa-

tial resolution, the small time step sizes essential to keep a stable solution can provide these

schemes very costly on a per simulation basis. Usually, implicit time discretizations scheme

is unconditionally stable for solving Richards’ equation numerically. The weighted two-level

implicit discretization most commonly used results in a nonlinear system of equations, and the

conventional approach has been to solve this nonlinear system using an iterative procedure.

Newton and Picard methods are two commonly iterative techniques with the simpler Picard

method being the more popular of the two [15, 16, 17, 18, 19, 20, 21] . In certain situations

where the relative permeability and water saturation functions are highly nonlinear, conver-

gence difficulties may be encountered in solving the flow equation by using the Picard iterative

method. To overcome this problem, the Newton–Raphson method should be considered. The
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Newton procedure has been extensively used in conjunction with finite difference techniques

to solve variably saturated flow problems.

In this study, backward Euler scheme is used as a one of the most popular time approxi-

mation for the Richards’ equation. The nonlinear dependency of moisture content on pressure

head, the Richards’ equation become highly nonlinear, as a result iterative calculation and lin-

earization are needed. From a practical viewpoint, the Picard method is used in this study

because it is simple and exhibits a good performance in many problems [22, 23]. Although,

there are several successful iterative schemes have been proposed [23, 24, 25, 26].

Picard iterative scheme converge linearly, computationally cheap on a per-iteration basis,

and preserves symmetry of the discrete system of equations, accordingly this technique has

received very much concentration. However, under certain circumstances, a number of studied

has been proved that this scheme may diverge [8, 18] and verified theoretically [27]. Nonsym-

metric system matrices attains in the Newton scheme which is more complex and expensive,

however it achieves a higher rate of convergence and more robust for certain types of prob-

lems than Picard linearization. But use of the Newton scheme has been limited to one- and

two-dimensional unsaturated flow models [15, 18, 28, 29].

2. NUMERICAL PROCEDURES

2.1. Finite element models. For solving Richards’ equation (1.1), the finite element Galerkin

discretization in space and first order backward Euler and second order Crank–Nicolson finite

difference time approximation schemes are used in this study.

The spatial domain is sibdivided into M-1 elements in the finite element network. Let the

pressure head function ψ be approximated by a trial function of the form

ψ (z, t) ≈ ψ̂ (z, t) =

M∑
J=1

NJ (z)ψJ(t) (2.1)

where NJ (z) and ψJ(t) are nodal basis shape functions and nodal values of ψ at time t, re-

spectively, M is the total number of nodes in the finite element model. In local coordinate space

−1 ≤ ξ ≤ 1, the approximating function for each element (e) is ψ̂(e) =
∑2

i=1N
(e)
i (ξ)ψ

(e)
i (t)=

1
2 (1− ξ)ψ

(e)
1 (t)+ 1

2 (1 + ξ)ψ
(e)
2 (t) which we can write in vector form as ψ̂(e) =

(
N(e) (ξ)

)T
Ψ(e)(t). The global function (2.1) becomes

ψ̂ =
M−1∑
e=1

(N(e))
T
Ψ(e) =

M−1∑
e=1

ψ̂(e) (2.2)

The symmetric weak formulation of Galerkin’s method applied to (1.1) yields the system of

ordinary differential equations [30]

A (Ψ)Ψ+ F (Ψ)
dΨ

dt
= q (t)−b(Ψ) (2.3)

where Ψ is the vector of undetermined coefficients corresponding to the values of pressure

head at each node, q contains the specified Darcy flux boundary conditions, and A, b, and F are
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given over local subdomain element Ω(e) as

A(e) =

∫
Ω(e)

K(e)
s Kr(ψ̂

(e))
dN(e)

dz

(
dN(e)

dz

)T

dz (2.4)

b(e) =

∫
Ω(e)

K(e)
s Kr(ψ̂

(e))
dN(e)

dz
dz (2.5)

F(e) =

∫
Ω(e)

S(ψ̂(e))N(e)(N(e))
T
dz (2.6)

Here NT to denote the transpose of N.

The nonlinear integrals in (2.4), (2.5), and (2.6) are evaluated by the second order Gaussian

quadrature formula introducing an additional source of numerical error. The magnitude of this

error will depend on the degree of nonlinearity in the Kr(ψ) and S(ψ) characteristic equations

and can be minimized by using higher order numerical quadrature or a smaller mesh size Δz.

2.2. Time differencing. The time derivative term in (2.3) is approximated by a λ-weighted

finite difference technique. We obtain

A
(
Ψk+λ

)
Ψk+λ + F

(
Ψk+λ

) Ψk+1 −Ψk

Δt
= q

(
tk+λ

)
− b(Ψk+λ) (2.7)

whereΨk+λ = λΨk+1 + (1− λ)Ψk; 0 ≤ λ ≤ 1 (2.8)

and k denotes the time step iteration.

The equations (2.7) is a system of nonlinear in Ψk+1 and λ = 0.5 and λ =1 are correspond

the Crank–Nicolson and backward Euler implicit scheme respectively.

3. ITERATIVE METHODS

The governing equation for variably saturated flow requires soil hydraulic functions that de-

scribe the relationship between soil water pressure and hydraulic conductivity as a function

of soil moisture content. Generally, these functions are highly nonlinear and their use sub-

stantially increases computational complexity. Especially, the derivatives of moisture content

can exhibit sharp changes near the saturation. It is this nonlinear dependency of the moisture

content on the pressure head that makes the numerical solution of Richards’ equation problem-

atic and requires sophisticated numerical methods in order to overcome convergence problems

and/or poor computational efficiency. Since the system of the equation is nonlinear, iterative

calculation and linearization are needed. In linearization schemes such as the Picard and the

Newton, the number of iterations needed to converge is a determining factor for the simulation

efficiency. To this purpose, convergence rate is often enhanced by providing the solver with an

initial estimate that is closer to the final solution for the current time step. This can be obtained

by taking the initial guess from the previous time step and by choosing a sufficiently small time

step size. Thus, numerical algorithms often include an empirical time step adaptation criterion.
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3.1. Newton scheme. Let us consider

f
(
Ψk+1

)
= A

(
Ψk+λ

)
Ψk+λ + F

(
Ψk+λ

) Ψk+1 −Ψk

Δt
−q
(
tk+λ

)
− b

(
Ψk+λ

)
= 0

(3.1)

Here m stands for iteration index, so the Newton scheme [30] is

f
′ (

Ψk+1, m
)
h = −f

(
Ψk+1, m

)
(3.2)

where h = Ψk+λ, m+1 −Ψk+λ, m (3.3)

and

f
′
ij = λAij +

1

Δtk+1
Fij +

∑
s

∂Ais

∂ψk+1
j

ψk+λ
s +

1

Δtk+1

∑
s

∂Fis

∂ψk+1
j

(
ψk+1
s − ψk

s

)
+

∂bi

∂ψk+1
j

(3.4)

is the ijth component of the Jacobian matrix f
′ (
Ψk+1

)
.

The Newton iteration scheme can be thought of as a parallel chord method with updating,

that is, we use the “tangent” f
′

as the iteration matrix, and update this slope matrix at each

iteration.

3.2. Picard Scheme. The simple formulation of Picard scheme [23] can be obtained directly

from (2.7) by iterating with all linear occurrences of Ψk+1 taken at the current iteration level

m+1 and all nonlinear occurrences at the previous level m. We get,[
λA
(
λΨk+λ, m

)
+

1

Δt
F
(
Ψk+λ, m

)]
h = −f

(
Ψk+1, m

)
(3.5)

where h = Ψk+λ, m+1 −Ψk+λ, m.

From (3.2) and (3.5), it is evident that the Picard scheme is an approximate Newton method.

The Newton scheme is quadratically convergent, while Picard converges only linearly under

suitable conditions. Newton linearization generates a nonsymmetric system matrix, but Picard

preserves the symmetry of the original discretization is the important difference between these

two schemes. This factor is important in evaluating the relative efficiency of the two schemes,

since different storage and linear solver algorithms can be used to exploit these structural dif-

ferences. Also, the calculation of the three derivative terms in the Jacobian makes the Newton

scheme more costly and algebraically complex than Picard.

4. CONSTITUTIVE RELATIONSHIPS

The numerical solution to Richards’ equation is based on knowledge of the relation between

the pore pressure head and the water content, the water content and the unsaturated hydraulic

conductivity. The most commonly used relationships are the Brooks-Corey [31] and the van

Genuchten [32] model. These two models illustrated in detail as follows:
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4.1. The Brooks-Corey model. The constitutive relationships proposed by Brooks and Corey

[31] are given by;

θ (ψ) = θr + (θs − θr)

(
ψd

ψ

)
if ψ ≤ ψd (4.1)

θ (ψ) = θs if ψ > ψd (4.2)

K (ψ) = Ks

[
θ (ψ)− θr
θs − θr

]3+2/n

if ψ ≤ ψd (4.3)

K (ψ) = Ks if ψ > ψd (4.4)

c (ψ) = n
θs − θr
|ψd|

(
ψd

ψ

)n+1

if ψ ≤ ψd (4.5)

c (ψ) = 0 if ψ > ψd (4.6)

where ψd = − 1
α is air entry pressure head [L], α is mean pore size, θr the residual moisture

content, θs is porosity, c (ψ) is moisture capacity, Ks is saturated hydraulic conductivity and

n = 1− 1
m is a pore-size distribution index.

4.2. The van Genuchten model. The most commonly used empirical constitutive relations

for moisture content and hydraulic conductivity is due to the work of van Genuchten [32] and

are given by;

θ (ψ) = θr +
θs − θr

[1 + |αψ|n]m if ψ ≤ 0 (4.7)

θ (ψ) = θs if ψ > 0 (4.8)

K (ψ) = Ks

[
θ − θr
θs − θr

] 1
2

{
1−
[
1−
(

θ − θr
θs − θr

) 1
m

]m}2

if ψ ≤ 0 (4.9)

K (ψ) = Ks if ψ > 0 (4.10)

c (ψ) = αmn
θs − θr

[1 + |αψ|n]m+1 |αψ|n−1 if ψ ≤ 0 (4.11)

c (ψ) = 0 if ψ > 0 (4.12)

The characteristic equations given above were used in the stated test simulations. The par-

ticular curves used for each test case are indicated, along with the corresponding parameter

values. The method used to evaluate the moisture content and its derivative needed in the Ja-

cobian of the Newton scheme, may affect the convergence behavior of the iterative schemes,

due to possible discontinuities, steep gradients, and points of inflection in these curves and

their derivatives. Numerical differentiation is often used to prevent floating point overflow near

singularities or to avoid oscillations around points of inflection. Besides, the highly nonlinear



203

dependency of the hydraulic properties on the pressure head makes solution of the Richards’

equation problematic, and requiring a sophisticated numerical scheme.

5. NUMERICAL RESULTS AND DISCUSSIONS

In the numerical experiments, dynamic time stepping control is used to adjust step size

of time during simulation according to the convergence behavior of the nonlinear iteration

scheme. A convergence tolerance is specified for each time step, along with a maximum num-

ber of iterations, maxit. Starting time step size is Δt0 and simulation proceed until achieve the

maximum time Tmax. The current time step size is increased by a factor of Δtmag to a max-

imum size of Δtmax if convergence is achieved in fewer than maxit1 iterations, it is remain

unchanged if convergence required between maxit1 and maxit2 iterations, and it is decreased

by a factor of Δtred to a minimum of Δtmin if convergence required more than maxit2 it-

erations. If convergence is not achieved within maxit, the solution at the current time level

is recomputed using a reduced time step size to the minimum time step size Δtmin. For the

first time step of simulation, the initial conditions are used as the first solution estimate for the

iterative procedure. For subsequent time steps of simulation the pressure head solution from

the previous step is used as the first estimate. Thus time step size has a direct effect on conver-

gence behavior, via its influence on the quality of the initial solution estimate. Back-stepping is

also triggered if linear solver failed or if the convergence or residual errors become larger than

maximum allowable convergence or residual error in the nonlinear solution. BiCGSTAB, bi-

conjugate gradients stabilized method with the tolerance 10−10 is used to solve the generated

system of linear equations and maximum iteration is 1000. For the nonlinear iterative meth-

ods, the infinity norm (l∞) of the convergence error is used as the termination criterion; that

is, when
∥∥Ψk+λ, m+1 −Ψk+λ, m

∥∥ ≤ tol is satisfied, convergence is achieved. The residual

error (
∥∥f (Ψk+1, m

)∥∥) is computed using l∞ and l2 norms. For evaluating the performance

of the proposed schemes, all numerical simulations were run on Dell INSPIRON, 2.56 GHz

system.

5.1. Test case 1. This problem considers a soil column of 2m deep discretized with a vertical

resolution Δz = 0.00625m. The initial pressure head distribution is ψ (z, 0) = z − 2. At the

bottom of the column, a water table boundary condition (i.e., ψ (0, t) = 0) is imposed, while a

time-dependent Dirichlet condition is imposed at the top boundary

ψ (2, t) =

⎧⎨⎩ −0.05 + 0.03 sin
(

2πt
100000

)
if 0 < t ≤ 100000

0.1 if 100000 < t ≤ 180000
−0.05 + 2952.45 exp (−t/18204.8) if 180000 < t ≤ 300000

The soil hydraulic properties are described by the van Genuchten mode. The soil parameters

are θs = 0.410, θr = 0.095, α = 1.9/m, n = 1.31 and Ks = 0.062m/day.

The Dirichlet boundary condition leads to significant ponding between 100000s and 200000s,

and this type of boundary condition, prominent in coupled groundwater/surface water model-

ing, is a source of difficulty in the iterative schemes.
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These soil properties correspond to an unconsolidated clay loam with a nonuniform grain

size distribution [33]. Numerical solvers have to face difficulty in the second period of the sim-

ulation (100000 <t ≤180000s). Because of sudden increase of the upper Dirichlet boundary

condition to a positive value of 0.1m (ponding), it creates a sharp moisture front that infil-

trates into the soil column. Ponding decreases exponentially the beginning of the third period

(t>180000s), reaching to a final value -0.05 m with asymptotically, and by the end of the

simulation the entire column is close to full saturation.

The computed pressure head profiles by Picard and Newton iterative schemes for backward

Euler and Crank–Nicolson techniques at times 35000s, 155000s and 300000s including initial

conditions are displayed in FIGURE 1. The solution profile at t = 155000s, which falls within

the ponding period, shows the excess water that forms at the soil surface and the rather sharp

moisture front that is generated. These solutions are very similar those reported in the literature

[34, 35, 36, 37].

FIGURE 1. Pressure head profiles for Picard (Euler and Crank–Nicolson) and

Newton (Euler and Crank–Nicolson) schemes at various times (P=Picard,

N=Newton, Crank–Nic=Crank–Nicolson)

A comparison of computational statistics, such as the cumulative mass balance errors, the

relative cumulative mass balance errors (%), the total number of time steps, and the nonlinear

iterations per time steps for the various runs for the two time discretization approaches, are

tabulated in TABLE 1. From these statistics in TABLE 1 it can be concluded that all runs have

adequate and comparable accuracy. The cumulative mass balance errors almost zero for all the

cases and their plots are presented in FIGURE 2.
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FIGURE 2. Evolution of mass balance errors for the entire simulation of Test

case 1

TABLE 1. Summary statistics of the Test case 1. [*ite=iteration]

Picard Newton

Euler Crank–Nicolson Euler Crank–Nicolson

MBE (m3) 1.169e-4 -1.384e-6 7.791e-5 1.608e-5

MBE (%) 2.116e+0 -2.557e-2 1.422e+0 2.965e-1

No. of Time Steps 2033 4741 914 6298

NL ite/Time steps 5.58 5.00 6.04 4.87

5.2. Test case 2. Example 2 is a standard test problem that has been previously examined [38,

39, 40, 41]. The domain of this test problem is short and saturated conditions are not developed.

In this test case, constant pressure head boundary conditions are imposed, at the bottom and

top of the soil column are -10m and -0.75m respectively. The initial pressure head is -10m. A

0.3m column of soil with van Genuchten parameters θs = 0.368, θr = 0.102, α = 3.35/m,

n = 2.0 and Ks = 7.970m/day.

The performance of the methods under these conditions is shown in TABLE 2, and pressure

head profiles for 121 nodes are illustrated in FIGURE 3. As can be seen, all the evaluated

methods clearly outperform the conventional algorithm and these methods seem to handle this

test case without any significant problem. It is also noted that the performance of the schemes
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in all cases is very similar to that of the published reports [39, 40, 41]. Acceptable cumulative

mass balance errors are shown in FIGURE 4.

FIGURE 3. Pressure head profiles at 0.20 days for the Picard (Euler and

Crank–Nicolson) and Newton (Euler and Crank–Nicolson) iterative schemes

TABLE 2. Summary statistics of the Test case 2

Picard Newton

Euler Crank–Nicolson Euler Crank–Nicolson

MBE (m3) 1.307e-4 1.182e-4 1.298e-4 9.846e-5

MBE (%) 1.627e+1 1.540e+1 1.617e+1 1.257e+1

No. of Time Steps 1609 999 3900 2322

NL ite/Time steps 6.01 6.10 6.01 6.02

5.3. Test Case 3. It is a vertical infiltration problem in a 10m soil column with Δz = 0.05m
and has been already analyzed in details [33, 39, 42]. It has constant head boundary condi-

tions at both top (ψ (10, t) = 0.1) and bottom (ψ (0, t) = 0.0) boundaries and a hydrostatic

equilibrium initial condition (ψ (z, 0) = −z). This soil column is parameterized using the
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FIGURE 4. Evolution of mass balance errors for the entire simulation of Test

case 2

van Genuchten relationships with θs = 0.301, θr = 0.093, α = 5.47/m, n = 4.264 and

Ks = 5.040m/days. The combination of the initial and boundary conditions along with

the constitutive relationships makes it a very difficult problem, since the solution includes an

extremely sharp front in space that moves through the domain as a function of time.

FIGURE 5 illustrates the simulation profiles at time t =0.25 days for all cases and all the

solutions are very similar to the one reported in the literature [39, 40, 41] and shows excellent

mass balance error which is displayed in FIGURE 6. Results are shown in TABLE 3 document

that satisfied the objective of this study.

TABLE 3. Summary statistics of the Test case 3

Picard Newton

Euler Crank–Nicolson Euler Crank–Nicolson

MBE (m3) 5.346e-4 5.394e-4 5.373e-4 5.334e-4

MBE (%) 8.930e+1 8.861e+1 8.951e+1 8.906e+1

No. of Time Steps 1037 593 321 259

NL ite/Time steps 5.53 5.61 5.58 5.41
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FIGURE 5. Pressure head profiles at time 0.25 days for the Picard (Euler and

Crank–Nicolson) and Newton (Euler and Crank–Nicolson) iterative schemes

5.4. Test case 4. Present test problem involves vertical infiltration with redistribution [42].

This problem considers a soil column of 5m deep discretized with a vertical resolution Δz

= 0.0125m. It has a constant head boundary condition (ψ (0, t) = 0.0) at the bottom of the

domain and a time dependent boundary condition (ψ (10, t) = −10(1.0− 1.01e−t)) at the top

of the domain with hydrostatic equilibrium initial conditions (ψ (z, 0) = −z). The time varying

boundary condition yields a difficult two-front problem. This soil column is parameterized

using the van Genuchten relationships with θs = 0.301, θr = 0.093, α = 5.47/m, n = 4.264.0
and Ks = 5.040m/days.

FIGURE 7 shows the comparison of pressure head solution profiles for all cases and similar

with the previous studies [40, 43]. It is evident from these figures that there is a rapid infiltration

of water from the surface, followed by a period of redistribution of the water due to the dynamic

boundary condition at the top of the domain. Cumulative mass balance error plot is displayed in

FIGURE 8 and computational performances are illustrated by TABLE 4. Both of them ensure

the accuracy of fully implicit backward Euler and Crank–Nicolson approximations.

5.5. Test case 5. This case involves vertical drainage through a layered soil from initially

saturated conditions. At time t = 0, the pressure head at the base of the column is reduced from
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FIGURE 6. Evolution of mass balance errors for the entire simulation of Test

case 3

TABLE 4. Summary statistics of the Test case 4

Picard Newton

Euler Crank–Nicolson Euler Crank–Nicolson

MBE (m3) 1.497e-2 1.519e-2 1.613e-2 1.505e-2

MBE (%) 8.082e+1 8.915e+1 8.875e+1 8.916e+1

No. of Time Steps 2672 1673 2024 1353

NL/Time steps 6.09 5.95 5.97 5.87

2 to 0m. During the subsequent drainage, a no flow boundary condition is applied to the top of

the column. This problem is considered to be a challenging test for numerical methods because

a sharp discontinuity in the moisture content occurs at the interface between two material layers

[36, 37, 44, 45].

The Brooks-Corey model is used to prescribe the pressure-moisture relationship. The hy-

draulic properties of the soils are given in TABLE 5. The soil profile is Soil-I for 0<z<0.6m



210 M.S. ISLAM

FIGURE 7. Pressure head profiles at time 0.325 days for the Picard (Euler and

Crank–Nicolson) and Newton (Euler and Crank–Nicolson) iterative schemes

and 1.2m<z<2m and Soil-II for 0.6m<z<1.2m. A Dirichlet boundary condition is imposed

at the base of the bottom boundary.

TABLE 5. Soil hydraulic properties used in Test case 5

Variables Soil-I Soil-II

θs (-) 0.35 0.35

θr (-) 0.07 0.035

α (cm−1) 0.0286 0.0667

n 1.5 3.0

Ks (cm/s) 9.81× 10−5 9.81× 10−3

FIGURE 9 shows the curves of simulated water saturation vs. elevation after 1050000s (ap-

proximately 12 days) time for implicit backward Euler and Crank–Nicolson methods, where

the simulation is performed for a fine mesh of 150 elements. The simulated profiles in the
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FIGURE 8. Evolution of mass balance errors for the entire simulation of Test

case 4

Crank–Nicolson method are less efficient than those given by the backward Euler time dis-

cretization method for the first two layers, and both of them the fully implicit backward Euler

method is considered as more reasonable. For the implicit backward Euler time discretization

approach of Picard and Newton iterative schemes, the interesting characteristic of this simu-

lation is that the middle medium sand layer tends to restrict drainage from the overlying fine

sand and high saturation levels are maintained in the upper fine soil for a considerable period

of time. Reduced drainage in the layered soil occurs because desaturation of the medium sand

results in a very low relative permeability for this layer. This example illustrates the effective-

ness of coarser-grained layers as capillary barriers in unsaturated flow. FIGURE 10 shows the

mass balance errors for the implicit backward Euler approximation and the simulated statistics

are listed in TABLE 6.

6. CONCLUSIONS

A finite element method has been developed and experimentally investigated for solving

the Richards’ equation using backward Euler and Crank–Nicolson time differencing schemes.

This method is based on the Picard and Newton iterative formulation of the model equations,
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FIGURE 9. Saturation prediction after 12 days (approximately) for the Picard

(Euler and Crank–Nicolson) and Newton (Euler and Crank–Nicolson) iterative

schemes

TABLE 6. Summary statistics of the Test case 5

Picard Newton

Euler Crank–Nicolson Euler Crank–Nicolson

MBE (m3) -6.589e-5 7.997e-3 9.601e-5 7.866e-3

MBE (%) 5.282e-1 -3.756e+2 -7.786e-1 -4.146e+2

No. of Time Steps 1147 1140 46165 100059

NL/Time steps 1.61 1.53 3.61 3.63

and is suitable for the simulation of variably saturated flow on homogeneous but not for het-

erogeneous soils. Since the finite element equations for this simpler implementation would

involve lower order derivatives of the characteristic equations, errors arising in near-saturated

regions would be reduced. Besides, pressure-head based form of Richards’ equation for the

work reported here was to maintain a consistent formulation for the two iterative strategies and

dynamic time stepping can be easily handled. The numerical results presented exhibit clearly
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FIGURE 10. Evolution of mass balance errors for the entire simulation of Test

case 5 for Euler method of Picard and Newton iterative schemes

that the formulation is effective in handling severely nonlinear cases of variably-saturated flow.

The performance of the proposed scheme was evaluated by conducting five test simulations.

For each of the tested homogeneous soil problems, the numerical results obtained from the

two solution algorithms were almost identical, provided that the same spatial and temporal dis-

cretizations were employed. As well as, the results are in good agreement with the previous

numerical studies and poses excellent mass balance property over the entire spatial mesh. For

the layered soil test case, the Crank–Nicolson scheme incurred numerical instability or diver-

gence under the same simulation conditions. The success of the algorithm in simulating a vari-

ety of problems leads to confidence in its applicability to many variably saturated/unsaturated

multi-dimensional flow problems.
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