• Title/Summary/Keyword: Fullerene($C_{60}$)

Search Result 80, Processing Time 0.03 seconds

Electron transport in core-shell type fullerene nanojunction

  • Sergeyev, Daulet;Duisenova, Ainur
    • Advances in nano research
    • /
    • v.12 no.1
    • /
    • pp.25-35
    • /
    • 2022
  • Within the framework of the density functional theory combined with the method of non-equilibrium Green's functions (DFT + NEGF), the features of electron transport in fullerene nanojunctions, which are «core-shell» nanoobjects made of a combination of fullerenes of different diameters C20, C80, C180, placed between gold electrodes (in a nanogap), are studied. Their transmission spectra, the density of state, current-voltage characteristics and differential conductivity are determined. It was shown that in the energy range of -0.45-0.45 eV in the transmission spectrum of the "Au-C180-Au" nanojunction appears a HOMO-LUMO gap with a width of 0.9 eV; when small-sized fullerenes C20, C80 are intercalation into the cavity C180 the gap disappears, and a series of resonant structures are observed on their spectra. It has been established that distinct Coulomb steps appear on the current-voltage characteristics of the "Au-C180-Au" nanojunction, but on the current-voltage characteristics "Au-C80@C180-Au", "Au-(C20@C80)@C180-Au" these step structures are blurred due to a decrease in Coulomb energy. An increase in the number of Coulomb features on the dI/dV spectra of core-shell fullerene nanojunctions was revealed in comparison with nanojunctions based on fullerene C60, which makes it possible to create high-speed single-electron devices on their basis. Models of single-electron transistors (SET) based on fullerene nanojunctions "Au-C180-Au", "Au-C80@C180-Au" and "Au-(C20@C80)@C180-Au" are considered. Their charge stability diagrams are analyzed and it is shown that SET based on C80@C180-, (C20@C80)@C180- nanojunctions is output from the Coulomb blockade mode with the lowest drain-to-source voltage.

The effect of Fullerene (C60) nanoparticles on the surface of PVDF composite membrane

  • Kim, Kyung Hee;Lee, Ju Sung;Hong, Hyun Pyo;Han, Jun Young;Park, Jin-Won;Min, ByoungRyul
    • Membrane and Water Treatment
    • /
    • v.6 no.5
    • /
    • pp.423-437
    • /
    • 2015
  • Polyvinylidene fluoride/fullerene nanoparticle (PVDF/$C_{60}$) composite microfiltration (MF) membranes were fabricated by a non-solvent induced phase separation (NIPS) using N, N-dimethylacetamide (DMAc) as solvent and deionized water (DI) as coagulation solution. Polyvinylpyrrolidone (PVP) was added to the casting solution to form membrane pores. $C_{60}$ was added in increments of 0.2% from 0.0% to 1.0% to produce six different membrane types: one pristine PVDF membrane type with no $C_{60}$ added as control, and five composite membrane types with varying $C_{60}$ concentrations of 0.2, 0.4, 0.6, 0.8 and 1.0%, respectively. The mechanical strength, morphology, pore size and distribution, hydrophilicity, surface property, permeation performance, and fouling resistance of the six membranes types were characterized using respective analytical methods. The results indicate that membranes containing $C_{60}$ have higher surface porosity and pore density than the pristine membrane. The presence of numerous pores on the membrane caused weaker mechanical strength, but the water flux of the composite membranes increased in spite of their smaller size. Initial flux and surface roughness reached the maximum point among the composite membranes when the $C_{60}$ concentration was 0.6 wt.%.

Synthesis of SnO2-Mn-C60 Nanocomposites and Their Photocatalytic Activity for Degradation of Organic Dyes

  • Li, Jiulong;Ko, Jeong Won;Ko, Weon Bae
    • Elastomers and Composites
    • /
    • v.52 no.4
    • /
    • pp.287-294
    • /
    • 2017
  • Nanocomposites based on $SnO_2-Mn$ were synthesized by the reaction of tin (II) chloride dihydrate and manganese (II) chloride tetrahydrate at a molar ratio of 10:1 in the presence of ammonium hydroxide at $80^{\circ}C$. The $SnO_2-Mn$ nanocomposites were stirred with fullerene [$C_{60}$] in a mass ratio of 2:1 in tetrahydrofuran to prepare $SnO_2-Mn-C_{60}$ nanocomposites; these nanocomposites were obtained upon heating the mixture of $SnO_2-Mn$ nanocomposites and fullerene [$C_{60}$] in an electric furnace at $700^{\circ}C$ for 2 h. The synthesized $SnO_2-Mn-C_{60}$ nanocomposites were confirmed through various characterization methods such as X-ray diffraction and scanning electron microscopy. The photocatalytic activities of the $SnO_2-Mn-C_{60}$ nanocomposites were demonstrated by the degradation of the organic dyes BG, MB, MO, and RhB under 254 nm irradiation and evaluated using UV-Vis spectrophotometry.

Molecular dynamics studies of interaction between hydrogenand carbon nano-carriers

  • Wang, Yun-Che;Wu, Chun-Yi;Chen, Chi;Yang, Ding-Shen
    • Coupled systems mechanics
    • /
    • v.3 no.4
    • /
    • pp.329-344
    • /
    • 2014
  • In this work, quantum molecular dynamics simulations (QMD) are preformed to study the hydrogen molecules in three types of carbon nanostructures, $C_{60}$ fullerene, (5,5) and (9,0) carbon nanotubes and graphene layers. Interactions between hydrogen and the nanostructures is of importance to understand hydrogen storage for the development of hydrogen economy. The QMD method overcomes the difficulties with empirical interatomic potentials to model the interaction among hydrogen and carbon atoms in the confined geometry. In QMD, the interatomic forces are calculated by solving the Schrodinger's equation with the density functional theory (DFT) formulation, and the positions of the atomic nucleus are calculated with the Newton's second law in accordance with the Born-Oppenheimer approximation. It is found that the number of hydrogen atoms that is less than 58 can be stored in the $C_{60}$ fullerene. With larger carbon fullerenes, more hydrogen may be stored. For hydrogen molecules passing though the fullerene, a particular orientation is required to obtain least energy barrier. For carbon nanotubes and graphene, adsorption may adhere hydrogen atoms to carbon atoms. In addition, hydrogen molecules can also be stored inside the nanotubes or between the adjacent layers in graphite, multi-layer graphene.

Study of Nano-scale Fullerene (C60) Clusters Formed in Micro-sized Droplet by UV Irradiation

  • Yeo, Seung-Jun;Ahn, Jeung-Sun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.571-571
    • /
    • 2012
  • We discovered the formation of C60 aggregates in solution by means of photoluminescence spectroscopic study on C60 in solutions. From the in-depth investigation of temperature dependence of the luminescence of C60 in toluene, benzene and CS2 solutions, we reported that the C60 aggregates are formed during cooling at the freezing temperature of these solvents. Furthermore, the C60 aggregates can be changed to stable structures by irradiating with UV pulse-laser (Nd:YAG laser, 355nm). As a consequence, we could obtain nano-scale photo-polymerized C60 clusters, which appear as round-shaped nano- scale particles in high resolution transmission electron-microscopy (HRTEM) images. However, the yield of the nano-scale C60 clusters obtained by this method is too small. So we designed and developed a system to obtain C60 cluster of macroscopic quantity by using ultrasonic nebulizer. In this system, C60 solution was vaporized to several micro-sized droplets in vacuum, resulting in the formation of C60 aggregates by evaporating solvent (toluene). The system was invented to produce nano-scale carbon clusters by the irradiation of UV light upon C60 aggregates in vacuum. We have characterized the products, C60 cluster, obtained from the system by using UV absorption spectra and HPLC spectra. Although the products have a possibility of inclusion various forms of C60 cluster, results support that the product formed from the system by using vaporizer method establishes a new method to obtain C60 cluster in macroscopic quantity. In the presentation, the details of the system and the results of characterization are reported.

  • PDF

Studies of electrokinetic motion of fullerene in liquid crystal medium for electronic paper displays (전자종이 표시소자를 위한 수평전기장에서의 플러렌 움직임 연구)

  • Kim, Mi-Young;Kim, Sung-Min;Jo, Eun-Mi;Choi, Jung-Hun;Hwang, Ji-Hye;Srivastava, Anoop Kumar;Lee, Myong-Hoon;Lee, Seung-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.04a
    • /
    • pp.63-64
    • /
    • 2008
  • Electrokinetic motion of fullerene ($C_{60}$) particles in liquid crystal (LC) medium under an in-plane electric field has been studied for the application to the electronic paper display. Fullerenes move in the direction of applied electric field due to interaction between the induced dipole moment on $C_{60}$ and external electric field at lower threshold voltages compared to other devices such as QR-LPD (Quick Response Liquid Powder Display) and TBD (Twisting Ball Display). We also confirmed the bistability of fullerene particles in LC medium and the results showed that the 87% and 81% of original reflectance or transmittance of image was retained after 24 hours and 48 hours respectively. Our studies show the possibility that fullerenes can be used for electronic paper display.

  • PDF

Simulation of the Geometries and Energies of $C_{24} and C_{60}$based on a Semiempirical Potential (반경험적 포텐셜에 의한 $C_{24}와 C_{60}$의 구조 및 에너지에 관한 시뮬레이션)

  • 이종무
    • Korean Journal of Crystallography
    • /
    • v.2 no.1
    • /
    • pp.27-31
    • /
    • 1991
  • The geometries and energyies of C24 and C60 tullerenes have been calculated by the lattice statics simplation technique based on a semiempirical Tersoff Potential. The simulation results results agree well with ab initio calculations.

  • PDF

Preparation and Thermal Performance of Fullerene-Based Lead Salt

  • Guan, Hui-Juan;Peng, Ru-Fang;Jin, Bo;Liang, Hua;Zhao, Feng-Qi;Bu, Xing-Bing;Han, Wen-Jing;Chu, Shi-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2257-2262
    • /
    • 2014
  • $C_{60}$ is widely investigated because of its unique structure. But its applications in solid propellant seem to be relatively neglected. $C_{60}$ has more outstanding features than carbon black which is widely used as a catalyst ingredient of solid propellant. To combine the advantages of fullerene and lead salts, another good composite in propellant catalysts, we synthesized a kind of fullerene phenylalanine lead salt (FPL) and explored its thermal performances by differential thermal analysis (DTA) and thermogravimetry analysis (TGA). The results show it undergoes four exothermic processes started from 408 K. Combined TGA and X-ray diffractometer (XRD), the decomposition mechanism of FPL was derived by TG-IR and comparing IR spectra of FPL and its residues after burned to $327^{\circ}C$, $376^{\circ}C$ and $424^{\circ}C$, respectively. Effect of FPL on the decomposition characteristic of hexogen (RDX), a type of explosive in propellant, has been investigated using DTA at different heating rate, which shows the decomposition temperatures of the explosive are all reduced by more than 20 K. The corresponding activation energy ($E_a$) is decreased by $30kJ{\cdot}mol^{-1}$. So FPL has potential application as a combustion catalyst in solid propellant.

Synthesis and Characterization of Novel Fullerene($C_{60}$) Derivative with Photoresponsive Azobenzene Group (광감응형 아조벤젠기를 갖는 신규 플러렌 유도체의 합성과 물성분석)

  • Han, Ki-Jong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.50-58
    • /
    • 2014
  • A novel fullerene derivative with photoresponsive azobenzene group was designed and synthesized, and its photoresponsive properties were reported. Starting from 4-nitrophenol, compound 1, which is containing fullerene moiety connected to azobenzene group through covalent linkage was synthesized by 5 steps. All the intermediates and the final compound were characterized by $^1H$, $^{13}C$-NMR, FAB-Mass or elemental analysis. Compound 1 exhibited the expected photoresponsive behavior. Chloroform solution($10^{-5}M$) of it served to maximize the absorption at 351 nm corresponding to the trans-azobenzene chromophore. Irradiation of this solution with 365 nm light resulted in photoisomerization to cis-azobenzene, as evidenced by decrease in the absorbance at 351 nm and an increase in absorbance at 450nm. A photostationary state was reached within about 150 s. Thermal reversion to the original spectrum was observed over the course of about 6 h at room temperature in the dark. However, exposure to bright sun light for about 5 s also effect almost complete reversion to the trans-isomer. This indicates that there is no strong steric influence on the trans-cis reversible isomerization of compound 1.