Browse > Article
http://dx.doi.org/10.5012/bkcs.2014.35.8.2257

Preparation and Thermal Performance of Fullerene-Based Lead Salt  

Guan, Hui-Juan (State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology)
Peng, Ru-Fang (State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology)
Jin, Bo (State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology)
Liang, Hua (State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology)
Zhao, Feng-Qi (Xi'an Modern Chemistry Research Institute)
Bu, Xing-Bing (State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology)
Han, Wen-Jing (State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology)
Chu, Shi-Jin (State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology)
Publication Information
Abstract
$C_{60}$ is widely investigated because of its unique structure. But its applications in solid propellant seem to be relatively neglected. $C_{60}$ has more outstanding features than carbon black which is widely used as a catalyst ingredient of solid propellant. To combine the advantages of fullerene and lead salts, another good composite in propellant catalysts, we synthesized a kind of fullerene phenylalanine lead salt (FPL) and explored its thermal performances by differential thermal analysis (DTA) and thermogravimetry analysis (TGA). The results show it undergoes four exothermic processes started from 408 K. Combined TGA and X-ray diffractometer (XRD), the decomposition mechanism of FPL was derived by TG-IR and comparing IR spectra of FPL and its residues after burned to $327^{\circ}C$, $376^{\circ}C$ and $424^{\circ}C$, respectively. Effect of FPL on the decomposition characteristic of hexogen (RDX), a type of explosive in propellant, has been investigated using DTA at different heating rate, which shows the decomposition temperatures of the explosive are all reduced by more than 20 K. The corresponding activation energy ($E_a$) is decreased by $30kJ{\cdot}mol^{-1}$. So FPL has potential application as a combustion catalyst in solid propellant.
Keywords
Fullerene phenylalanine lead salt; Thermal decomposition; Combustion catalyst; Solid propellant;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Olivier, R.; Mohamad, S.; Andrey, S.; Valerie, K.; Nicolas, K.; Martal, L.; Hendrik, B.; Miquel, S.; Hugo, D. J. Phys. Chem. Lett. 2013, 3, 536.
2 Bruce, C. B. Appl. Surf. Sci. 1990, 45, 221.   DOI   ScienceOn
3 Chen, X. L.; Jiao, C. M. Polym. Degrad. Stab. 2008, 93, 2222.   DOI
4 Zheng, X. D.; Cui, R.; Li, H. L.; Wang, M. T.; Wang, J. N.; Zhong, L.; Jiang, J.; Zhang, Z. Z. Chinese J. Explos. Propell. 2006, 29,
5 Zhao, F. Q.; Zhang, H.; An, T.; Yi, J. H.; Xu, S. Y.; Gao, H. X. Chinese J. Inorg. Chem. 2013, 29, 24.
6 Liu, J. J.; Liu, Z. L.; Lin, X. Y.; Cheng, J.; Fang, D. J. Nanjing Univ. Sci. Techn. 2013, 37, 640.
7 Shao, C. B.; Li, J. Z.; Wu, S. X.; Qi, X. F.; Song, Z. W.; Liu, F. L. Chem. Propell. Polym. Mater. 2011, 9, 67.
8 Huang, X. P.; Chang, P.; Wang, B. Z.; Fu, X. Y.; Fan, X. Z. Chem. Propell. Polym. Mater 2013, 11, 56.
9 Li, Y. Chem. Enterp. Manage. 2013, 18, 139.
10 Jin, B.; Peng, R. F.; Yang, W. N.; Wang, K.; Yuan, B. Q.; Chu, S. J. Synthetic. Commun. 2010, 40, 580.   DOI   ScienceOn
11 Shi, W. X.; Peng, R. F.; Jin, B.; Xiao, L. N.; Wang, S. B.; Chu, S. J. J. Safe. Environ. 2012, 12, 156.
12 Li, L.; Peng, R. F.; Jin, B.; Zhao, F. Q.; Xu, S. Y.; Fan, L. S.; Liu, Q. Q.; Chu, S. J. J. Funct. Mater. 2013, 44, 814.
13 Kratschmer, W.; Lamb, L. D.; Fostiropoulos, K.; Huffman, D. R. Nature 1990, 347, 354.   DOI
14 Hu, Z.; Zhang, C. H.; Huang, Y. D.; Sun, S. F.; Guan, W. C.; Yao, Y. H. Chem-Biol. Interact. 2012, 195, 86.   DOI   ScienceOn
15 Li, Q. Y.; Wang, X. L.; Sun, S. P. Nat. Sci. J. Harbin. Normal Univ. 1996, 12, 67.
16 Cai, Y. X.; Hu, Y. M.; Long, J. J. Hubei Univ. (Natural Science) 2007, 29, 258.
17 Pramoda, K. P.; Liu, T. X.; Liu, Z. H. Polym. Degrad. Stab. 2003, 81, 47.   DOI   ScienceOn
18 Kissinger, H. E. Anal. Chem. 1957, 29, 1702.   DOI
19 Liu, Q. Q.; Jin, B.; Peng, R. F.; Shu, Y. J.; Chu, S. J.; Dong, H. S. Chinese J. Energ. Mater. 2012, 20, 579.
20 Stetzer, M. R.; Heiney, P. A.; Fischer, J. E.; McGhie, A. R. Phys. Rev. B 1997, 55, 127.   DOI   ScienceOn
21 Li, S. F.; Gao, F.; Zhao, F. Q.; Li, S. W. J. Propul. Techn. 2000, 21,
22 He, D. Q.; Li, S. F.; Su, H.; Li, S. W. Chinese. J. Explos. Propell. 1997, 20, 22.
23 Zhao, F. Q.; Li, S. W.; Shan, W. G.; Li, S. F. J. Propul. Techn. 2000, 21, 72.
24 Greiner, B. E.; Frederick, R. A.; Moser, M. D. J. Propul. Power 2003, 19, 713.   DOI   ScienceOn
25 Zhao, F. Q.; Li, S. W. J. Propul. Tech. 1992, 13, 57.
26 Shi, W. X. Mianyang: SWUST 2012, 48.
27 Raphael, B.; Vincent, L.; Saad, A.; Harm-Anton, K. Macromolecules 2013, 15, 6151.
28 Hui, R. H.; Guan, C. X.; Hou, D. Y. J. Anshan. Teachers Coll. 2001, 3, 95.