Browse > Article
http://dx.doi.org/10.12989/anr.2022.12.1.025

Electron transport in core-shell type fullerene nanojunction  

Sergeyev, Daulet (Department of Physics, K. Zhubanov Aktobe Regional State University)
Duisenova, Ainur (Department of Physics, K. Zhubanov Aktobe Regional State University)
Publication Information
Advances in nano research / v.12, no.1, 2022 , pp. 25-35 More about this Journal
Abstract
Within the framework of the density functional theory combined with the method of non-equilibrium Green's functions (DFT + NEGF), the features of electron transport in fullerene nanojunctions, which are «core-shell» nanoobjects made of a combination of fullerenes of different diameters C20, C80, C180, placed between gold electrodes (in a nanogap), are studied. Their transmission spectra, the density of state, current-voltage characteristics and differential conductivity are determined. It was shown that in the energy range of -0.45-0.45 eV in the transmission spectrum of the "Au-C180-Au" nanojunction appears a HOMO-LUMO gap with a width of 0.9 eV; when small-sized fullerenes C20, C80 are intercalation into the cavity C180 the gap disappears, and a series of resonant structures are observed on their spectra. It has been established that distinct Coulomb steps appear on the current-voltage characteristics of the "Au-C180-Au" nanojunction, but on the current-voltage characteristics "Au-C80@C180-Au", "Au-(C20@C80)@C180-Au" these step structures are blurred due to a decrease in Coulomb energy. An increase in the number of Coulomb features on the dI/dV spectra of core-shell fullerene nanojunctions was revealed in comparison with nanojunctions based on fullerene C60, which makes it possible to create high-speed single-electron devices on their basis. Models of single-electron transistors (SET) based on fullerene nanojunctions "Au-C180-Au", "Au-C80@C180-Au" and "Au-(C20@C80)@C180-Au" are considered. Their charge stability diagrams are analyzed and it is shown that SET based on C80@C180-, (C20@C80)@C180- nanojunctions is output from the Coulomb blockade mode with the lowest drain-to-source voltage.
Keywords
Coulomb blockade; current-voltage characteristic; electron transport; fullerene; nanojunction; single-electron transistor;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Huang, W.Q., Liu, S.R., Peng, H.Y., Li, X. and & Huang, Z.M. (2020), "Synthesis of new silicene structure and its energy band properties", Chinese Phys. B, 29(8), 084202. https://doi.org/10.1088/1674-1056/ab942c.   DOI
2 Kalashnikov, K., Artanov, A.A., de Lange, G. and Koshelets, V.P. (2018), "Investigation of the harmonic mixer and low-frequency converter regimes in a superconducting tunnel junction", IEEE T Appl. Superconduct., 28(4), 2400105. https://doi.org/10.1109/TASC.2018.2803043.   DOI
3 Kang, A.K., Zandi, M.H. and Gorji, N.E. (2019), "Simulation analysis of graphene contacted perovskite solar cells using SCAPS-1D", Optical Quant. Electron., 51(4), 91. https://doi.org/10.1007/s11082-019-1802-3.   DOI
4 Khadem Hosseini, V., Ahmadi, M.T. and Ismail, R. (2018), "Analysis and modeling of fullerene single-electron transistor based on quantum dot arrays at room temperature", J. Electron. Mater., 47(8), 4799-4806. https://doi.org/10.1007/s11664-018-6366-7.   DOI
5 Kharlamova, M.V. (2013), "Electronic properties of pristine and modified single-walled carbon nanotubes", Phys. Usp., 56(11), 1047-1073. https://doi.org/10.3367/UFNe.0183.201311a.1145.   DOI
6 Kiraly, B., Liu, X., Wang, L., Zhang, Zh., Mannix, A.J., Fisher, B.L., Yakobson, B.I. and Hersam, M.C., Guisinger, N.P. (2019), "Borophene synthesis on Au(111)", ACS Nano, 13(4), 3816-3822. https://doi.org/10.1021/acsnano.8b09339.   DOI
7 Srivastava, A., Khan, M.S. (2018), "First principle study of single-electron transistor based on metal-organic complex of dibenzothiophene", Organic Electron., 53, 227-234. https://doi.org/10.1016/j.orgel.2017.11.042.   DOI
8 Stokbro, K. (2008), "First-principles modeling of electron transport", J. Phys. Condens. Matter., 20(6), 064216. https://doi.org/10.1088/0953-8984/20/6/064216.   DOI
9 Tolpygo, S.K. (2016), "Superconductor digital electronics: Scalability and energy efficiency issues", Low Temp. Phys., 42(5), 361-379. https://doi.org/10.1063/1.4948618.   DOI
10 Wang, P., Chen, B.B. and Wang, X. (2021), "Organic spin valves with nonvolatile memory using molecular doping", Synthetic Met., 273, 116676. https://doi.org/10.1016/j.synthmet.2020.116676.   DOI
11 Ward, D.R., Scott, G.D., Keane, Z.K., Halas, N.J. and Natelson, D. (2008), "Electronic and optical properties of electromigrated molecular junctions", J. Phys. Condens. Matter, 20(37), 374118. https://doi.org/10.1088/0953-8984/20/37/374118.   DOI
12 Xiang, R., Inoue, T., Zheng, Y., Kumamoto, A., Qian, Y., Sato, Y., Liu, M., Tang, D., Gokhale, D., Guo, J., Hisama, K., Yotsumoto, S., Ogamoto, T., Arai, H., Kobayashi., Y., Zhang, H., Hou, B., Anisimov, A., Maruyama, M., Miyata, Y., Okada, S., Chiashi, S., Li, Y., Kong, J., Kauppinen, E.I., Ikuhara, Y., Suenaga. K. and Maruyama, S. (2020), "One-dimensional van der Waals heterostructures", Science, 367(6477), 537-542. htts://doi.org/10.1126/science.aaz2570.   DOI
13 Pasupathy, A.N., Park, J., Chang, C., Soldatov, A.V., Lebedkin, S., Bialczak, R.C., Grose, J.E., Donev, L.A.K., Sethna, J.P., Ralph, D.C. and McEuen, P.L. (2005), "Vibration-assisted electron tunneling in c140 transistors", Nano Lett., 5(2), 203-207. https://doi.org/10.1021/nl048619c.   DOI
14 Park, H., Park, J., Lim, A.K.L., Anderson, E.H., Alivisatos, A.P. and McEuen, P.L. (2000), "Nanomechanical oscillations in a single-C60 transistor", Nature, 407(6800), 57-60. https://doi.org/10.1038/35024031.   DOI
15 Iijima, S. (1991), "Helical microtubules of graphitic carbon", Nature, 354(6348), 56-58. https://doi.org/10.1038/354056a0.   DOI
16 Mouafo, L.D.N., Godel, F., Simon, L., Dappe, Y., Baaziz, W., Noumbe, U., Lorchat, E., Martin, M., Berciaud, S., Doudin, B., Ersen, O., Dlubak, B., Seneor, P. and Dayen, J.F. (2020), "0D/2D heterostructures vertical single electron transistor", Adv. Funct. Mater., 31(9), 2008255. https://doi.org/10.1002/adfm.202008255.   DOI
17 Gaurav, K., SanthiBhushan, B., Ray, S. and Srivastava, A. (2019), "Acridinium based organic molecular single-electron transistor for high performance switching applications", IEEE T Nanotechnol., 18, 1148-1155. https://doi.org/10.1109/TNANO.2019.2945995.   DOI
18 Martini, L., Arcos, I., Bocchi, M., Brambilla, R., Dalessandro, R., Frigerio, A. and Rossi, V. (2006), "Resistive fault current limiter prototypes: mechanical and electrical analyses", J. Phys. Conf. Ser., 43(226), 925-928. https://doi.org/10.1088/1742-6596/43/1/226.   DOI
19 Wang, Y., Zhang, S., Zhang, G., Xu, X., Zhang, C., Wang, Y. and Xie, X. (2020), "Low-drift and compact readout electronics for practical SQUID magnetocardiography working in unshielded environment", Physica C, 575(7), 1353685. https://doi.org/10.1016/j.physc.2020.1353685.   DOI
20 Nasri, A., Boubaker, A., Hafsi, B., Khaldi, W. and Kalboussi, A. (2018), "High-sensitivity sensor using C60-single molecule transistor", IEEE Sens. J., 18(1), 248-254. https://doi.org/10.1109/jsen.2017.2769803.   DOI
21 Nakajima, A., Shoji, A., Nagano, K. and Kajihara, J. (2015), "Dependence of memory characteristics of fullerene-containing polymer on the kind of gate metal", Japanese J. Appl. Phys., 54(10), 100303. https://doi.org/10.7567/jjap.54.100303.   DOI
22 Montanaro, A., Wei, W., De Fazio, D., Sassi, U., Soavi, G., Aversa, P., Ferrari, A.C., Happy, H., Legagneux, P. and Pallecchi, E. (2021), "Optoelectronic mixing with high-frequency graphene transistors", Nature Commun., 12(1), 2728. https://doi.org/10.1038/s41467-021-22943-1.   DOI
23 Morozov, S.V, Novoselov, K.S. and Geim, A.K. (2008), "Electronic transport in graphene", Phys. Usp., 51(7), 744-748. https://doi.org/10.1070/PU2008v051n07ABEH006575.   DOI
24 Murali, R. (2012), Graphene Nanoelectronics: From Materials to Circuits, Springer, New York, USA.
25 Pica, M. and D'Amato, R. (2020), "Chemistry of phosphorene: synthesis, functionalization and biomedical applications in an update review", Inorganics, 8(4), 29. https://doi.org/10.3390/inorganics8040029.   DOI
26 Smidstrup, S., Markussen, T., Vancraeyveld, P., Wellendorff, J., Schneider, J., Gunst, T., Verstichel, B., Stradi, D., Khomyakov, P.A., Vej-Hansen, U.G., Lee. M.E., Chill, S.T., Rasmussen, F., Penazzi, G., Corsetti, F., Ojanpera, A., Jensen, K., Palsgaard, M.L.N., Martinez, U., Blom, A., Brandbyge, M. and Stokbro, K. (2020), "QuantumATK: An integrated platform of electronic and atomic-scale modelling tools", J. Phys. Condens. Matter., 32, 015901. https://doi.org/10.1088/1361-648X/ab4007.   DOI
27 Sahoo, S.K. and Wei, K.H. (2019), "A perspective on recent advances in 2D stanene nanosheets", Adv. Mater. Interf., 6(18), 1900752. https://doi.org/10.1002/admi.201900752.   DOI
28 Sergeyev, D.M. (2018), "Computer simulation of electrical characteristics of a graphene cluster with Stone-Wales defects", J. Nano Electron. Phys., 10(3), 03018. https://doi.org/10.21272/jnep.10(3).03018.   DOI
29 Sergeyev, D.M. (2020c), "Specific features of electron transport in a molecular nanodevice containing a nitroamine redox center", Tech. Phys., 65(4), 573-577. https://doi.org/10.1134/S1063784220040180.   DOI
30 Yang, W., Cao, Y., Han, J., Lin, X., Wang, X., Wei, G., Chen, Lv., Bournel, A. and Zhao, W. (2021), "Spin-filter induced large magnetoresistance in 2D van der Waals magnetic tunnel junctions", Nanoscale, 13(2), 862-868. https://doi.org/10.1039/d0nr07290g.   DOI
31 Lee, K., Chakram, S., Kim, S., Mujid, F., Ray, A., Gao, H., Park, C., Zhong, Y., Muller, D., Schuster, D. and Park, J. (2019), "Two-dimensional material tunnel barrier for josephson junctions and superconducting qubits", Nano Lett., 19(11), 8287-8293. https://doi.org/10.1021/acs.nanolett.9b03886.   DOI
32 Sergeyev, D.M. (2012), "About tunneling of pairs of the cooper pairs through the Josephson junctions in exotic superconductors", Russ. Phys. J., 55(1), 84-91. https://doi.org/10.1007/s11182-012-9779-4.   DOI
33 Sergeyev, D.M. (2013), "Plasma frequency in Josephson junctions with a non-sinusoidal current-phase relation", Solid State Phenom., 200, 272-275. https://doi.org/10.4028/www.scientific.net/SSP.200.272.   DOI
34 Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V. and Firsov A.A. (2004), "Electric field effect in atomically thin carbon films", Science., 306(5696), 666-669. https://doi.org/10.1126/science.1102896.   DOI
35 Zhu, J., Chen, X., Shang, W., Ning, J., Wang, D., Zhang, J. and Hao, Y. (2021), "Van der Waals contact between 2D magnetic VSe2 and transition metals and demonstration of high-performance spin-field-effect transistors", Sci. China Mater., 64(11), 2786-2794. https://doi.org/10.1007/s40843-021-1657-9.   DOI
36 Koh, W., Moon, H.S., Lee, S.G., Choi, J.I. and Jang, S.S. (2014), "A first-principles study of lithium adsorption on a graphene-fullerene nanohybrid system", ChemPhysChem, 16(4), 789-795. https://doi.org/10.1002/cphc.201402675.   DOI
37 Kornev, V.K., Kolotinskiy, N.V., Sharafiev, A.V., Soloviev, I.I. and Mukhanov, O.A. "Broadband active electrically small superconductor antennas", Supercond. Sci. Technol., 30(10), 103001. https://doi.org/10.1088/1361-6668/aa7a52/   DOI
38 Kroto, H.W., Heath, J.R., O'Brien, S.C., Curl, R.F. and Smalley, R.E. (1985), "C60: Buckminsterfullerene", Nature, 318(6042), 162-163. https://doi.org/10.1038/318162a0.   DOI
39 Kumar, B.R. (2018), "Investigation on mechanical vibration of double-walled carbon nanotubes with inter-tube Van der waals forces", Adv. Nano Res., 6(2), 135-145. https://doi.org/10.12989/anr.2018.6.2.135.   DOI
40 Landauer, R. (1970), "Electrical resistance of disordered one-dimensional lattices", Philos. Mag., 21(172), 863-867. https://doi.org/10.1080/14786437008238472.   DOI
41 Likharev, K.K. (2012), "Superconductor digital electronics", Physica C., 482, 6-18. https://doi.org/10.1016/j.physc.2012.05.016.   DOI
42 Devi J.M. (2019), "Simulation of graphene-fullerene nanohybrid structure", Bull. Mater. Sci., 42(2), 75. https://doi.org/10.1007/s12034-019-1753-0.   DOI
43 Chuan, M.W., Wong, K.L., Hamzah, A., Rusli, S., Alias, N.E., Lim, C.S. and Tan, M.L.P. (2021), "Device modelling and performance analysis of two-dimensional AlSi3 ballistic nanotransistor", Adv. Nano Res., 10(1), 91-99. https://doi.org/10.12989/anr.2021.10.1.091.   DOI
44 Dalessandro R.B., Bocchi, M., Rossi, V. and Martini L.F. (2007), "Test results on 500 kva-classmgb2-based fault current limiter prototypes", IEEE T Appl. Superconduct., 17(2), 1776-1779. https://doi.org/10.1109/TASC.2007.899034.   DOI
45 Daqiq, R. (2021), "Spin-filter devices based on resonant magnetic tunnel junctions", J. Electron. Mater., 50(7), 3930-3936. https://doi.org/10.1007/s11664-021-08892-x.   DOI
46 Macha P., Oelsner G., Reiner J.M., Marthaler M., Andre S., Schon G., Hubner U., Meyer H.G., Il'ichev E., Ustinov A.V. (2014), "Implementation of a quantum metamaterial using superconducting qubits", Nature Commun., 5(1), 5146. https://doi.org/ 10.1038/ncomms6146.   DOI
47 Marani, R. and Perri, A.G. (2017), "An approach to model the temperature effects on I-V characteristics of CNTFETs", Adv. Nano Res., 5(1), 61-67. https://doi.org/10.12989/anr.2017.5.1.061.   DOI
48 Gehring, P., Harzheim, A., Spiece, J., Sheng, Y., Rogers, G., Evangeli, C. and Mol, J.A. (2017), "Field-effect control of graphene-fullerene thermoelectric nanodevices", Nano Lett., 17(11), 7055-7061. https://doi.org/10.1021/acs.nanolett.7b03736.   DOI
49 Faley, M. I., Poppe, U., Borkowski, R. D., Schiek, M., Boers, F., Chocholacs, H., Dammers, J., Eich, E., Shah, N.J., Ermakov, A.B., Slobodchikov, V.Yu., Maslennikov, Yu, V. and Koshelets, V.P. (2012), "Magnetoencephalography using a Multilayer hight C DC SQUID Magnetometer", Phys. Proced., 36, 66-71. https://doi.org/10.1016/j.phpro.2012.06.131.   DOI
50 Ganjia, M.D. and Nourozi, F. (2008), "Density functional non-equilibrium Green's function (DFT-NEGF) study of the smallest nano-molecular switch", Physica E, 40(7,) 2606-2613. https://doi.org/10.1016/j.physe.2007.09.123.   DOI
51 Geim, A.K. (2009), "Graphene: Status and prospects", Science, 324(5934), 1530-1534. https://doi.org/10.1126/science.1158877.   DOI
52 Eletskii, A.V. (1997), "Carbon nanotubes", Phys. Usp., 40, 899-924. https://doi.org/10.3367/UFNr.0167.199709b.0945.   DOI
53 Burroughs, C.J., Benz, S.P., Harvey, T.E. and Hamilton, C.A. (1999), "1 Volt DC Programmable Josephson Voltage Standard System", IEEE T Appl Superconduct., 9(2), 4145-4148. https://doi.org/10.1109/77.783938.   DOI
54 Akasaka, T., Nagase, S. (2002), Endofullerenes (A New Family of Carbon Clusters), Springer, Netherlands.
55 Artyukh, A.A. and Chernozatonskii L.A. (2020), "Simulation of the formation and mechanical properties of layered structures with polymerized fullerene-graphene components", JETP Lett., 111(2), 109-115. https://doi.org/10.31857/S0370274X20020083.   DOI
56 Fried, J.P., Bian, X., Swett, J.L., Kravchenko, I.I., Briggs, G.A.D. and Mol, J.A. (2020), "Large amplitude charge noise and random telegraph fluctuations in room-temperature graphene single-electron transistors", Nanoscale, 12(2), 871-876. https://doi.org/10.1039/c9nr08574b.   DOI
57 Sergeyev, D.M. and Duisenova, A.G. (2021), "Electron transport in model quasi-two-dimensional van der waals nanodevices", Tech. Phys. Lett., 47(4), 375-378. https://doi.org/10.1134/S1063785021040295.   DOI
58 Ceron, M.R., Zhan, C., Campbell, P.G., Freyman, M.C., Santoyo, C., Echegoyen, L. and Biener, M.M. (2019), "Integration of fullerenes as electron-acceptors in 3d graphene networks: Enhanced charge transfer and stability through molecular design", ACS Appl. Mater. Interf., 14(11), 28818-28822. https://doi.org/10.1021/acsami.9b06681.   DOI
59 Dragoman, M., Dinescu, A. and Dragoman, D. (2019), "2D materials nanoelectronics: Mew concepts, fabrication, characterization from microwaves up to optical spectrum", Phys. Status Solidi A, 216(8) 1800724. https://doi.org/10.1002/pssa.201800724.   DOI
60 Perdew, J.P., Burke, K. and Ernzerhof, M. (1996), "Generalized gradient approximation made simple", Phys. Rev. Lett., 77(18), 3865-3868. https://doi.org/10.1103/PhysRevLett.77.3865.   DOI
61 Cardenas-Jiron, G.I., Borges-Martinez, M., Sikorski, E. and Baruah, T. (2017), "excited states of light-harvesting systems based on fullerene/graphene oxide and porphyrin/smaragdyrin", J. Phys. Chem. C, 121(9), 4859-4872. https://doi.org/10.1021/acs.jpcc.6b12452.   DOI
62 Averin, D.V. and Likharev, K.K. (1986), "Coulomb blockade of single-electron tunneling, and coherent oscillations in small tunnel junctions", J. Low Temp. Phys., 62(3), 345-373. https://doi.org/10.1007/BF00683469.   DOI
63 Likharev, K.K. (1999), "Single-electron devices and their applications", Proceedings of the IEEE, 87(4), 606-632. https://doi.org/10.1109/5.752518.   DOI
64 Cattaneo, M., Giorgi, G., Maniscalco, S., Paraoanu, G. and Zambrini, R. (2021), "Bath-induced collective phenomena on superconducting qubits: Synchronization, subradiance, and entanglement generation", Annalen der Physik, 533(5), 2100038. https://doi.org/10.1002/andp.202100038.   DOI
65 Chen, R., Lin, C., Yu, H., Tang, Y., Song, C., Yuwen, L. and Huang, W. (2016), "Templating C60 on MoS2 nanosheets for 2d hybrid van der waals p-n nanoheterojunctions", Chem. Mater., 28(12), 4300-4306. https://doi.org/10.1021/acs.chemmater.6b01115.   DOI
66 Cuevas, J.C. and Scheer, E. (2017), Molecular Electronics (An Introduction to Theory and Experiment), World Scientific Publishing Co. Pte. Ltd., New Jersey, U.S.A.
67 Miao, W., Gao, H., Zhou, K., Zhong, J., Ren, Y., Zhang, W., Shi, S., Delorme, Y. (2021), "Linear and nonlinear flux-flow behaviors in superconducting hot-electron bolometer mixers", Appl. Phys. Lett., 118(11), 112602. https://doi.org/10.1063/5.0045624.   DOI
68 Bal, M., Long, J., Zhao, R., Wang, H., Park, S., McRae, C.R.H., Zhao, T., Lake, R., Monarkha, V., Simbierowicz, S., Frolov, D., Pilipenko, R., Zorzetti, S., Romanenko, A., Liu, C.H., McDermott, R. and Pappas, D. (2021), "Overlap junctions for superconducting quantum electronics and amplifiers", Appl. Phys. Lett., 118(11), 112601. https://doi.org/10.1063/5.0048621.   DOI
69 Brandbyge, M., Mozos, J.L., Ordejon, P., Taylor, J. and Stokbro, K. (2002), "Density-functional method for nonequilibrium electron transport", Phys. Rev. B, 65(16), 165401. https://doi.org/10.1103/PhysRevB.65.165401.   DOI
70 Brandbyge, M., Mozos, J.L., Ordejon, P., Taylor, J. and Stokbro, K. (2002), "Density-functional method for nonequilibrium electron transport", Phys. Rev. B, 65(16), 165401. https://doi.org/10.1103/PhysRevB.65.165401.   DOI
71 Geim, A.K. and Grigorieva, I.V. (2013), "Van der Waals heterostructures", Nature, 499(25), 419-425. https://doi.org/10.1038/nature12385.   DOI
72 Gyanchandani, N., Pawar, S., Maheshwary, P. and Nemade, K. (2021), "Comprehensive study of spin field effect transistors with co-graphene ferromagnetic contacts", J. Magnetism and Magnetic Mater., 517, 167410. https://doi.org/ 10.1016/j.jmmm.2020.167410.   DOI
73 Chuan, M.W., Lau, J.Y., Wong, K.L., Hamzah, A., Alias, N.E., Lim, C.S. and Tan, M.L.P. (2021), "Low-dimensional modelling of n-type doped silicene and its carrier transport properties for nanoelectronic applications", Adv. Nano Res., 10(5), 415-422. htts://doi.org/10.12989/anr.2021.10.5.415.   DOI
74 Khademhosseini, V., Dideban, D. and Ahmadi, M. (2021), "The current analysis of a single-electron transistor based on double grapheme nanoscroll island", Solid State Commun., 327(7), 114234. https://doi.org/10.1016/j.ssc.2021.114234.   DOI
75 Sergeyev, D.M., Ashikov, N. and Zhanturina, N. (2021), "Electric transport properties of a model nanojunction Graphene-Fullerene C60-Graphene", Int. J. Nanosci., 20(1), 2150007. https://doi.org/10.1142/S0219581X21500071.   DOI
76 Davis, N., Rudge, S.L. and Kosov, D.S. (2021), "Electronic statistics on demand: Bunching, antibunching, positive, and negative correlations in a molecular spin valve", Phys. Rev. B, 103(20), 205408. https://doi.org/10.1103/PhysRevB.103.205408.   DOI
77 Dragoman, M. and Dragoman, D. (2017), 2D Nanoelectronics: Physics and Devices of Atomically Thin Materials, Springer International Publishing, Cham, Switzerland.
78 Ferre, N., Filatov, M. and Huix-Rotllant M. (2016), Density-Functional Methods for Excited States, Springer International Publishing, Cham, Switzerland.
79 Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S. and Geim, A.K. (2009), "The electronic properties of graphene", Rev. Mod. Phys., 81(1), 109-162. https://doi.org/10.1103/RevModPhys.81.109.   DOI
80 Champagne, A.R., Pasupathy, A.N. and Ralph, D.C. (2005), "Mechanically adjustable and electrically gated single-molecule transistors", Nano Letters, 5(2), 305-308. https://doi.org/10.1021/nl0480619.   DOI
81 Hirohata, A., Yamada, K., Nakatani, Y., Prejbeanu, I.L., Dieny, B., Pirro, P. and Hillebrands, B. (2020), "Review on spintronics: Principles and device applications", J. Magnetism Magnetic Mater., 509, 166711. https://doi.org/10.1016/j.jmmm.2020.166711.   DOI
82 Sergeyev, D.M. and Shunkeyev, K. (2018), "Investigation of transport parameters of graphene-based nanostructures", Russ. Phys. J., 60(11), 1938-1945. https://doi.org/10.1007/s11182-018-1306-9.   DOI
83 Sergeyev, D.M. (2020a), "Features of the electrical characteristics of an octagraphene nanotube", J. Nano Electron. Phys., 11(6), 06022. https://doi.org/10.21272/jnep.11(6).06022.   DOI
84 Sergeyev, D.M. (2020b), "Single electron transistor based on endohedral metallofullerenes Me@C60 (Me = Li, Na, K)", J. Nano Electron. Phys., 12(3), 03017. https://doi.org/10.21272/jnep.12(3).03017.   DOI
85 Sergeyev, D.M. (2021), "One-dimensional Schottky nanodiode based on telescoping polyprismanes", Adv. Nano Res., 10(4), 339-347. htts://doi.org/10.12989/anr.2021.10.4.339.   DOI