Browse > Article
http://dx.doi.org/10.12989/mwt.2015.6.5.423

The effect of Fullerene (C60) nanoparticles on the surface of PVDF composite membrane  

Kim, Kyung Hee (Department of Chemical and Biomolecular Engineering, Yonsei University)
Lee, Ju Sung (Department of Chemical and Biomolecular Engineering, Yonsei University)
Hong, Hyun Pyo (Department of Chemical and Biomolecular Engineering, Yonsei University)
Han, Jun Young (Fuel Cell Research Center, Korea Institute of Science and Technology)
Park, Jin-Won (Department of Chemical and Biomolecular Engineering, Yonsei University)
Min, ByoungRyul (Department of Chemical and Biomolecular Engineering, Yonsei University)
Publication Information
Membrane and Water Treatment / v.6, no.5, 2015 , pp. 423-437 More about this Journal
Abstract
Polyvinylidene fluoride/fullerene nanoparticle (PVDF/$C_{60}$) composite microfiltration (MF) membranes were fabricated by a non-solvent induced phase separation (NIPS) using N, N-dimethylacetamide (DMAc) as solvent and deionized water (DI) as coagulation solution. Polyvinylpyrrolidone (PVP) was added to the casting solution to form membrane pores. $C_{60}$ was added in increments of 0.2% from 0.0% to 1.0% to produce six different membrane types: one pristine PVDF membrane type with no $C_{60}$ added as control, and five composite membrane types with varying $C_{60}$ concentrations of 0.2, 0.4, 0.6, 0.8 and 1.0%, respectively. The mechanical strength, morphology, pore size and distribution, hydrophilicity, surface property, permeation performance, and fouling resistance of the six membranes types were characterized using respective analytical methods. The results indicate that membranes containing $C_{60}$ have higher surface porosity and pore density than the pristine membrane. The presence of numerous pores on the membrane caused weaker mechanical strength, but the water flux of the composite membranes increased in spite of their smaller size. Initial flux and surface roughness reached the maximum point among the composite membranes when the $C_{60}$ concentration was 0.6 wt.%.
Keywords
polyvinylidene fluoride (PVDF); fullerene ($C_{60}$); phase inversion; microfiltration (MF); composite membrane;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Arthanareeswaran, G., Sriyamuna Devi, T. and Raajenthiren, M. (2008), "Effect of silica particles on cellulose acetate blend ultrafiltration membranes: Part I", Sep. Purif. Technol., 64(1), 38-47.   DOI
2 Bae, T.-H. and Tak, T.-M. (2005), "Effect of $TiO_{2}$ nanoparticles on fouling mitigation of ultrafiltration membranes for activated sludge filtration", J. Membr. Sci., 249(1-2), 1-8.   DOI   ScienceOn
3 Biesheuvel, P.M. and Verweij, H. (1999), "Design of ceramic membrane supports: permeability, tensile strength and stress", J. Membr. Sci., 156(1), 141-152.   DOI
4 Bottino, A., Capannelli, G. and Comite, A. (2005), "Novel porous poly (vinylidene fluoride) membranes for membrane distillation", Desalination, 183(1), 375-382.   DOI
5 Cao, X., Ma, J., Shi, X. and Ren, Z. (2006), "Effect of $TiO_{2}$ nanoparticle size on the performance of PVDF membrane", Appl. Surf. Sci., 253(4), 2003-2010.   DOI
6 Chae, S.-R., Yamamura, H., Ikeda, K. and Watanabe, Y. (2008), "Comparison of fouling characteristics of two different poly-vinylidene fluoride microfiltration membranes in a pilot-scale drinking water treatment system using pre-coagulation/sedimentation, sand filtration, and chlorination", Water Res., 42(8), 2029-2042.   DOI
7 Hashino, M., Katagiri, T., Kubota, N., Ohmukai, Y., Maruyama, T. and Matsuyama, H. (2011), "Effect of surface roughness of hollow fiber membranes with gear-shaped structure on membrane fouling by sodium alginate", J. Membr. Sci., 366(1), 389-397.   DOI
8 Hernandez, A., Calvo, J., Pradanos, P. and Tejerina, F. (1996), "Pore size distributions in microporous membranes. A critical analysis of the bubble point extended method", J. Membr. Sci., 112(1), 1-12.   DOI
9 Hong, J. and He, Y. (2012), "Effects of nano sized zinc oxide on the performance of PVDF microfiltration membranes", Desalination, 302(0), 71-79.   DOI
10 Hsieh, H. (1996), Inorganic Membranes for Separation and Reaction, Elsevier.
11 Madaeni, S.S. and Yeganeh, M.K. (2003), "Microfiltration of emulsified oil wastewater", J. Porous Mater., 10(2), 131-138.   DOI
12 Lapointe, J.-F., Gauthier, S.F., Pouliot, Y. and Bouchard, C. (2005), "Characterization of interactions between $\beta$-lactoglobulin tryptic peptides and a nanofiltration membrane: Impact on the surface membrane properties as determined by contact angle measurements", J. Membr. Sci., 261(1), 36-48.   DOI
13 Li, J.-F., Xu, Z.-L., Yang, H., Yu, L.-Y. and Liu, M. (2009), "Effect of $TiO_{2}$ nanoparticles on the surface morphology and performance of microporous PES membrane", Appl. Surf. Sci., 255(9), 4725-4732.   DOI   ScienceOn
14 Ma, X., Wigington, B. and Bouchard, D. (2010), "Fullerene C60: Surface Energy and Interfacial Interactions in Aqueous Systems", Langmuir, 26(14), 11886-11893.   DOI
15 Marshall, A., Munro, P. and Tragardh, G. (1997), "Influence of permeate flux on fouling during the microfiltration of $\beta$-lactoglobulin solutions under cross-flow conditions", J. Membr. Sci., 130(1), 23-30.   DOI
16 Ochoa, N., Masuelli, M. and Marchese, J. (2003), "Effect of hydrophilicity on fouling of an emulsified oil wastewater with PVDF/PMMA membranes", J. Membr. Sci., 226(1), 203-211.   DOI
17 Oh, S.J., Kim, N. and Lee, Y.T. (2009), "Preparation and characterization of PVDF/$TiO_{2}$ organic-inorganic composite membranes for fouling resistance improvement", J. Membr. Sci., 345(1), 13-20.   DOI   ScienceOn
18 Oshima, K., Evans-Strickfaden, T., Highsmith, A. and Ades, E. (1996), "The use of a microporous polyvinylidene fluoride (PVDF) membrane filter to separate contaminating viral particles from biologically important proteins", Biologicals, 24(2), 137-145.   DOI
19 Qin, J. and Chung, T.-S. (1999), "Effect of dope flow rate on the morphology, separation performance, thermal and mechanical properties of ultrafiltration hollow fibre membranes", J. Membr. Sci., 157(1), 35-51.   DOI
20 Park, H.-H., Lim, C.-W., Jo, H.-D., Choi, W.-K. and Lee, H.-K. (2007), "Absorption of $SO_{2}$ using PVDF hollow fiber membranes with PEG as an additive", Korean J. Chem. Eng., 24(4), 693-697.   DOI
21 Rahimpour, A., Jahanshahi, M., Rajaeian, B. and Rahimnejad, M. (2011), "$TiO_{2}$ entrapped nano-composite PVDF/SPES membranes: Preparation, characterization, antifouling and antibacterial properties", Desalination, 278(1), 343-353.   DOI   ScienceOn
22 Rana, D. and Matsuura, T. (2010), "Surface modifications for antifouling membranes", Chem. Rev., 110(4), 2448-2471.   DOI
23 Sarbolouki, M. (1982), "A general diagram for estimating pore size of ultrafiltration and reverse osmosis membranes", Sep. Sci. Technol., 17(2), 381-386.   DOI
24 Tan, X., Tan, S., Teo, W. and Li, K. (2006), "Polyvinylidene fluoride (PVDF) hollow fibre membranes for ammonia removal from water", J. Membr. Sci., 271(1), 59-68.   DOI
25 Taurozzi, J.S., Crock, C.A. and Tarabara, V.V. (2011), "C60-polysulfone nanocomposite membranes: Entropic and enthalpic determinants of C60 aggregation and its effects on membrane properties", Desalination, 269(1), 111-119.   DOI   ScienceOn
26 Vatanpour, V., Madaeni, S.S., Moradian, R., Zinadini, S. and Astinchap, B. (2011), "Fabrication and characterization of novel antifouling nanofiltration membrane prepared from oxidized multiwalled carbon nanotube/polyethersulfone nanocomposite", J. Membr. Sci., 375(1), 284-294.   DOI
27 Yan, L., Li, Y.S., Xiang, C.B. and Xianda, S. (2006), "Effect of nano-sized $Al_2O_3$-particle addition on PVDF ultrafiltration membrane performance", J. Membr. Sci., 276(12), 162-167.   DOI
28 Wang, P., Tan, K., Kang, E. and Neoh, K. (2002), "Plasma-induced immobilization of poly (ethylene glycol) onto poly (vinylidene fluoride) microporous membrane", J. Membr. Sci., 195(1), 103-114.   DOI
29 Wang, D., Teo, W. and Li, K. (2004), "Selective removal of trace $H_{2}S$ from gas streams containing $CO_{2}$ using hollow fibre membrane modules/contractors", Sep. Purif. Technol., 35(2), 125-131.   DOI
30 Wu, G., Gan, S., Cui, L. and Xu, Y. (2008), "Preparation and characterization of PES/$TiO_{2}$ composite membranes", Appl. Surf. Sci., 254(21), 7080-7086.   DOI   ScienceOn
31 Yang, X., Deng, B., Liu, Z., Shi, L., Bian, X., Yu, M., Li, L., Li, J. and Lu, X. (2010), "Microfiltration membranes prepared from acryl amide grafted poly (vinylidene fluoride) powder and their pH sensitive behaviour", J. Membr. Sci., 362(1), 298-305.   DOI
32 Zhang, M., Nguyen, Q.T. and Ping, Z. (2009), "Hydrophilic modification of poly (vinylidene fluoride) microporous membrane", J. Membr. Sci., 327(1-2), 78-86.   DOI   ScienceOn
33 Zheng, Y.-M., Zou, S.-W., Nanayakkara, K.G.N., Matsuura, T. and Chen, J.P. (2011), "Adsorptive removal of arsenic from aqueous solution by a PVDF/zirconia blend flat sheet membrane", J. Membr. Sci., 374(1-2), 1-11.   DOI