DOI QR코드

DOI QR Code

The effect of Fullerene (C60) nanoparticles on the surface of PVDF composite membrane

  • Kim, Kyung Hee (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Lee, Ju Sung (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Hong, Hyun Pyo (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Han, Jun Young (Fuel Cell Research Center, Korea Institute of Science and Technology) ;
  • Park, Jin-Won (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Min, ByoungRyul (Department of Chemical and Biomolecular Engineering, Yonsei University)
  • Received : 2014.07.10
  • Accepted : 2015.08.24
  • Published : 2015.09.25

Abstract

Polyvinylidene fluoride/fullerene nanoparticle (PVDF/$C_{60}$) composite microfiltration (MF) membranes were fabricated by a non-solvent induced phase separation (NIPS) using N, N-dimethylacetamide (DMAc) as solvent and deionized water (DI) as coagulation solution. Polyvinylpyrrolidone (PVP) was added to the casting solution to form membrane pores. $C_{60}$ was added in increments of 0.2% from 0.0% to 1.0% to produce six different membrane types: one pristine PVDF membrane type with no $C_{60}$ added as control, and five composite membrane types with varying $C_{60}$ concentrations of 0.2, 0.4, 0.6, 0.8 and 1.0%, respectively. The mechanical strength, morphology, pore size and distribution, hydrophilicity, surface property, permeation performance, and fouling resistance of the six membranes types were characterized using respective analytical methods. The results indicate that membranes containing $C_{60}$ have higher surface porosity and pore density than the pristine membrane. The presence of numerous pores on the membrane caused weaker mechanical strength, but the water flux of the composite membranes increased in spite of their smaller size. Initial flux and surface roughness reached the maximum point among the composite membranes when the $C_{60}$ concentration was 0.6 wt.%.

Keywords

Acknowledgement

Supported by : Yang Young Foundation

References

  1. Arthanareeswaran, G., Sriyamuna Devi, T. and Raajenthiren, M. (2008), "Effect of silica particles on cellulose acetate blend ultrafiltration membranes: Part I", Sep. Purif. Technol., 64(1), 38-47. https://doi.org/10.1016/j.seppur.2008.08.010
  2. Bae, T.-H. and Tak, T.-M. (2005), "Effect of $TiO_{2}$ nanoparticles on fouling mitigation of ultrafiltration membranes for activated sludge filtration", J. Membr. Sci., 249(1-2), 1-8. https://doi.org/10.1016/j.memsci.2004.09.008
  3. Biesheuvel, P.M. and Verweij, H. (1999), "Design of ceramic membrane supports: permeability, tensile strength and stress", J. Membr. Sci., 156(1), 141-152. https://doi.org/10.1016/S0376-7388(98)00335-4
  4. Bottino, A., Capannelli, G. and Comite, A. (2005), "Novel porous poly (vinylidene fluoride) membranes for membrane distillation", Desalination, 183(1), 375-382. https://doi.org/10.1016/j.desal.2005.03.040
  5. Cao, X., Ma, J., Shi, X. and Ren, Z. (2006), "Effect of $TiO_{2}$ nanoparticle size on the performance of PVDF membrane", Appl. Surf. Sci., 253(4), 2003-2010. https://doi.org/10.1016/j.apsusc.2006.03.090
  6. Chae, S.-R., Yamamura, H., Ikeda, K. and Watanabe, Y. (2008), "Comparison of fouling characteristics of two different poly-vinylidene fluoride microfiltration membranes in a pilot-scale drinking water treatment system using pre-coagulation/sedimentation, sand filtration, and chlorination", Water Res., 42(8), 2029-2042. https://doi.org/10.1016/j.watres.2007.12.011
  7. Hashino, M., Katagiri, T., Kubota, N., Ohmukai, Y., Maruyama, T. and Matsuyama, H. (2011), "Effect of surface roughness of hollow fiber membranes with gear-shaped structure on membrane fouling by sodium alginate", J. Membr. Sci., 366(1), 389-397. https://doi.org/10.1016/j.memsci.2010.10.025
  8. Hernandez, A., Calvo, J., Pradanos, P. and Tejerina, F. (1996), "Pore size distributions in microporous membranes. A critical analysis of the bubble point extended method", J. Membr. Sci., 112(1), 1-12. https://doi.org/10.1016/0376-7388(95)00025-9
  9. Hong, J. and He, Y. (2012), "Effects of nano sized zinc oxide on the performance of PVDF microfiltration membranes", Desalination, 302(0), 71-79. https://doi.org/10.1016/j.desal.2012.07.001
  10. Hsieh, H. (1996), Inorganic Membranes for Separation and Reaction, Elsevier.
  11. Lapointe, J.-F., Gauthier, S.F., Pouliot, Y. and Bouchard, C. (2005), "Characterization of interactions between $\beta$-lactoglobulin tryptic peptides and a nanofiltration membrane: Impact on the surface membrane properties as determined by contact angle measurements", J. Membr. Sci., 261(1), 36-48. https://doi.org/10.1016/j.memsci.2005.03.030
  12. Li, J.-F., Xu, Z.-L., Yang, H., Yu, L.-Y. and Liu, M. (2009), "Effect of $TiO_{2}$ nanoparticles on the surface morphology and performance of microporous PES membrane", Appl. Surf. Sci., 255(9), 4725-4732. https://doi.org/10.1016/j.apsusc.2008.07.139
  13. Ma, X., Wigington, B. and Bouchard, D. (2010), "Fullerene C60: Surface Energy and Interfacial Interactions in Aqueous Systems", Langmuir, 26(14), 11886-11893. https://doi.org/10.1021/la101109h
  14. Madaeni, S.S. and Yeganeh, M.K. (2003), "Microfiltration of emulsified oil wastewater", J. Porous Mater., 10(2), 131-138. https://doi.org/10.1023/A:1026035830187
  15. Marshall, A., Munro, P. and Tragardh, G. (1997), "Influence of permeate flux on fouling during the microfiltration of $\beta$-lactoglobulin solutions under cross-flow conditions", J. Membr. Sci., 130(1), 23-30. https://doi.org/10.1016/S0376-7388(97)00004-5
  16. Ochoa, N., Masuelli, M. and Marchese, J. (2003), "Effect of hydrophilicity on fouling of an emulsified oil wastewater with PVDF/PMMA membranes", J. Membr. Sci., 226(1), 203-211. https://doi.org/10.1016/j.memsci.2003.09.004
  17. Oh, S.J., Kim, N. and Lee, Y.T. (2009), "Preparation and characterization of PVDF/$TiO_{2}$ organic-inorganic composite membranes for fouling resistance improvement", J. Membr. Sci., 345(1), 13-20. https://doi.org/10.1016/j.memsci.2009.08.003
  18. Oshima, K., Evans-Strickfaden, T., Highsmith, A. and Ades, E. (1996), "The use of a microporous polyvinylidene fluoride (PVDF) membrane filter to separate contaminating viral particles from biologically important proteins", Biologicals, 24(2), 137-145. https://doi.org/10.1006/biol.1996.0018
  19. Park, H.-H., Lim, C.-W., Jo, H.-D., Choi, W.-K. and Lee, H.-K. (2007), "Absorption of $SO_{2}$ using PVDF hollow fiber membranes with PEG as an additive", Korean J. Chem. Eng., 24(4), 693-697. https://doi.org/10.1007/s11814-007-0028-4
  20. Qin, J. and Chung, T.-S. (1999), "Effect of dope flow rate on the morphology, separation performance, thermal and mechanical properties of ultrafiltration hollow fibre membranes", J. Membr. Sci., 157(1), 35-51. https://doi.org/10.1016/S0376-7388(98)00361-5
  21. Rahimpour, A., Jahanshahi, M., Rajaeian, B. and Rahimnejad, M. (2011), "$TiO_{2}$ entrapped nano-composite PVDF/SPES membranes: Preparation, characterization, antifouling and antibacterial properties", Desalination, 278(1), 343-353. https://doi.org/10.1016/j.desal.2011.05.049
  22. Rana, D. and Matsuura, T. (2010), "Surface modifications for antifouling membranes", Chem. Rev., 110(4), 2448-2471. https://doi.org/10.1021/cr800208y
  23. Sarbolouki, M. (1982), "A general diagram for estimating pore size of ultrafiltration and reverse osmosis membranes", Sep. Sci. Technol., 17(2), 381-386. https://doi.org/10.1080/01496398208068547
  24. Tan, X., Tan, S., Teo, W. and Li, K. (2006), "Polyvinylidene fluoride (PVDF) hollow fibre membranes for ammonia removal from water", J. Membr. Sci., 271(1), 59-68. https://doi.org/10.1016/j.memsci.2005.06.057
  25. Taurozzi, J.S., Crock, C.A. and Tarabara, V.V. (2011), "C60-polysulfone nanocomposite membranes: Entropic and enthalpic determinants of C60 aggregation and its effects on membrane properties", Desalination, 269(1), 111-119. https://doi.org/10.1016/j.desal.2010.10.049
  26. Vatanpour, V., Madaeni, S.S., Moradian, R., Zinadini, S. and Astinchap, B. (2011), "Fabrication and characterization of novel antifouling nanofiltration membrane prepared from oxidized multiwalled carbon nanotube/polyethersulfone nanocomposite", J. Membr. Sci., 375(1), 284-294. https://doi.org/10.1016/j.memsci.2011.03.055
  27. Wang, P., Tan, K., Kang, E. and Neoh, K. (2002), "Plasma-induced immobilization of poly (ethylene glycol) onto poly (vinylidene fluoride) microporous membrane", J. Membr. Sci., 195(1), 103-114. https://doi.org/10.1016/S0376-7388(01)00548-8
  28. Wang, D., Teo, W. and Li, K. (2004), "Selective removal of trace $H_{2}S$ from gas streams containing $CO_{2}$ using hollow fibre membrane modules/contractors", Sep. Purif. Technol., 35(2), 125-131. https://doi.org/10.1016/S1383-5866(03)00135-7
  29. Wu, G., Gan, S., Cui, L. and Xu, Y. (2008), "Preparation and characterization of PES/$TiO_{2}$ composite membranes", Appl. Surf. Sci., 254(21), 7080-7086. https://doi.org/10.1016/j.apsusc.2008.05.221
  30. Yan, L., Li, Y.S., Xiang, C.B. and Xianda, S. (2006), "Effect of nano-sized $Al_2O_3$-particle addition on PVDF ultrafiltration membrane performance", J. Membr. Sci., 276(12), 162-167. https://doi.org/10.1016/j.memsci.2005.09.044
  31. Yang, X., Deng, B., Liu, Z., Shi, L., Bian, X., Yu, M., Li, L., Li, J. and Lu, X. (2010), "Microfiltration membranes prepared from acryl amide grafted poly (vinylidene fluoride) powder and their pH sensitive behaviour", J. Membr. Sci., 362(1), 298-305. https://doi.org/10.1016/j.memsci.2010.06.057
  32. Zhang, M., Nguyen, Q.T. and Ping, Z. (2009), "Hydrophilic modification of poly (vinylidene fluoride) microporous membrane", J. Membr. Sci., 327(1-2), 78-86. https://doi.org/10.1016/j.memsci.2008.11.020
  33. Zheng, Y.-M., Zou, S.-W., Nanayakkara, K.G.N., Matsuura, T. and Chen, J.P. (2011), "Adsorptive removal of arsenic from aqueous solution by a PVDF/zirconia blend flat sheet membrane", J. Membr. Sci., 374(1-2), 1-11. https://doi.org/10.1016/j.memsci.2011.02.034

Cited by

  1. Preparation, characterization and comparison of antibacterial property of polyethersulfone composite membrane containing zerovalent iron or magnetite nanoparticles vol.8, pp.1, 2017, https://doi.org/10.12989/mwt.2017.8.1.051
  2. Fullerene Nanofiller Reinforced Epoxy Nanocomposites-Developments, Progress and Challenges vol.25, pp.3, 2015, https://doi.org/10.1080/14328917.2020.1748794