• Title/Summary/Keyword: Full-bridge cell

Search Result 70, Processing Time 0.019 seconds

Fuel Cell Generation System Combined Interleaved Full-bridge Converter with Half-bridge Inverter (인터리브드 풀브릿지 컨버터와 하프브릿지 인버터를 결합한 연료전지 발전 시스템)

  • Kim, Heon-Hee;Lee, Hee-Jun;Shin, Soo-Chul;Jung, Yong-Chae;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.518-519
    • /
    • 2012
  • This paper suggested a fuel cell generation system which combined interleaved full-bridge converter with half-bridge inverter. High ratio step-up converter is essential to use the power as general voltage source. Full-bridge converter has high efficiency and can boost the input voltage to high output with transformer. With series connected capacitors, interleaved full-bridge converter and half-bridge inverter are combined. Half-bridge inverter has two fewer switches compared to full-bridge type. Also, switching loss can be reduced. The performance is verified through simulation with 1.5[kW] fuel cell generation system.

  • PDF

A study on Fuel Cell generation system (연료전지 발전시스템에 관한 연구)

  • Jeong, Dong-Hyo
    • Proceedings of the KIEE Conference
    • /
    • 2008.11b
    • /
    • pp.77-78
    • /
    • 2008
  • Recently, a fuel cell is remarkable for new generation system. The fuel cell generation system converts the chemical energy of a fuel directly into electrical energy. The fuel cell generation is characterized by low voltage and high current. For connecting to utility, it needs both a step up converter and an inverter. The step up converter makes DC link and the inverter changes DC to AC. In this paper, full bridge converter and the single phase inverter are designed and installed for fuel cell. Simulation and experiment verify that fuel cell generation system could be applied for the distributed generation. In this paper, the 1.5kW active clamp current-fed full bridge converter employing MOSFETs is operated to discharge the battery whereas a voltage-fed half bridge converter employing IGBTs is operated to charge the battery.

  • PDF

A Novel PCCM Voltage-Fed Single-Stage Power Factor Correction Full-Bridge Battery Charger

  • Zhang, Taizhi;Lu, Zhipeng;Qian, Qinsong;Sun, Weifeng;Lu, Shengli
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.872-882
    • /
    • 2016
  • A novel pseudo-continuous conduction mode (PCCM) voltage-fed single-stage power factor correction (PFC) full-bridge battery charger is proposed in this paper. By connecting a freewheeling transistor in parallel with an input inductor, the PFC cell can operate in the PCCM with a constant duty ratio. Thus, the dc/dc stage can be designed using this constant duty ratio and the restriction on the duty ratio of the PFC cell is eliminated. As a result, the input current distortion is less and the dc bus voltage becomes controllable over the wide output power range of the battery charger. Moreover, the operation principle of the dc/dc stage is designed to be similar to that of a conventional phase-shifted full-bridge converter. Therefore, it is easy to implement. In this paper, the operation of the new converter is explained, and the design considerations of the controller and key parameters are presented. Simulation and experimental results obtained from a 1 kW prototype are given to confirm the operation of the proposed converter.

Fuel Cell Generation Systems with Active Clamp Current fed Half Bridge Converter (능동 클램프 전류형 하프 브리지 컨버터를 적용한 연료전지 발전시스템)

  • Jang S. J.;Kim J. T.;Lee T. W.;Lee B. K.;Won C. Y.
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.1
    • /
    • pp.78-86
    • /
    • 2005
  • Recently, a fuel cell with low voltage and high current output characteristics is remarkable for new generation system. It needs both a dc-dc boost converter and dc-ac inverter to be used in fuel cell generation system. Therefore, this paper presents dc-dc active clamp current-fed half-bridge converter with ZVS for fuel cell generation system. The proposed converter has outstanding advantages over the conventional dc-dc converters with respect to high efficiency and high component utilization. The Fuel Cell generation system consist of active clamp current-fed half-bridge converter to boost the Fuel Cell(PEMFC) voltage(28∼43[Vdc]) to 380[Vdc]. A single phase full-bridge inverter is implemented to produce 220[Vac], 60[Hz] AC outputs.

Feasibility Study of Tapped Inductor Filter Assisted Soft-Switching PWM DC-DC Power Converter

  • Moisseev S.;Sato S;Hamada S;Wakaoka M
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.231-234
    • /
    • 2003
  • This paper presents a novel high frequency transformer linked full-bridge type soft-switching phase-shift PWM control scheme DC-DC power converter, which can be used as power conditioner fur small-scale fuel cell power generation system. Using full-bridge soft-switching DC-DC converter topology makes possible to use low voltage high performance MOSFETs to achieve high efficiency of the power conditioner. A tapped inductor filter is implemented in the proposed soft-switching converter topology to achieve soft-switching PWM constant high frequency operation for a wide load variation range. to minimize circulating and idling currents without using additional resonant circuit and auxiliary power switching devices. The practical effectiveness of the proposed soft-switching DC-DC converter is verified in laboratory level experiment with 1 kW 100kHz breadboard setup using power MOSFETs. Actual efficiency of 94-96$\%$ is obtained for the wide load range

  • PDF

Efficiency analysis of Full-Bridge converter for fuel cell (연료전지용 풀브릿지 컨버터 효율분석)

  • Han, Dong-Hwa;Kim, Young-Sik;Jung, Byung-Hwan;Choi, Gyu-Ha
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.21-23
    • /
    • 2008
  • 본 논문은 현재 연료전지의 전력변환시스템에서 고주파 절연방식 중 많이 사용 되고 있는 Full-Bridge컨버터를 시뮬레이션 툴(ORCAD)을 이용하여 조건을 각각 달리하여 해석하였다. 전류의 부담을 줄이는 방법으로 사용하는 MOSFET을 병렬로 여러개 연결할 경우와 스위칭 주파수를 변화시켰을 경우 각각의 손실을 알아보았고 이를 통하여 효율개선의 방안을 제시하였다.

  • PDF

A Parallel Control of Full-bridge Converter for Fuel Cell Generation (연료전지 발전용 풀-브리지 컨버터의 병렬제어)

  • Na, Jae-Hyeong;Jang, Su-Jin;Park, Chan-Heung;Won, Chung-Yuen;Lee, Byoung-Kuk
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.05a
    • /
    • pp.235-240
    • /
    • 2007
  • A large power fuel cell generation system needs a parallel operation of de-de boost converter. Therefore, this paper proposed parallel operation algorithms of de-de boost converters for the large scale fuel cell generation system of 250[kW] and the operating principle along with the control method in detail. This paper uses a maximum current sharing method as a parallel operation method and also the phase shift full bridge de-de converter as a de-de boost converter. Simulation and experimental results on two prototype converter modules of 500W show that the parallel operation method can be applied to the 250[kW] power converter.

  • PDF

The Characteristics Analysis and Design of High-Frequency Isolated Type ZVZCS PS-PWM DC-DC Converter with Fuel Cell Generation System (연료전지 발전시스템에 적용된 고주파 절연형 ZVZCS PS-PWM DC-DC 컨버터의 설계 및 특성 해석)

  • Suh, Ki-Young;Mun, Sang-Pil;Kim, Dong-Hun;Lee, Hyun-Woo;Kwon, Soon-Kurl
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.4
    • /
    • pp.21-28
    • /
    • 2006
  • In this paper, the proposed full-bridge high frequency isolated zoo voltage and zero current switching phase shifted pulse width modulation(ZVZCS PS-PWM)DC-DC converter among fuel cell generation system consist of 1.2[kW] fuel cell of Nexa Power Module, full-bridge DC-DC converter to boost the fuel cell low voltage($28{\sim}43[%]$) to 380[VDC] and a single phase full-bridge inverter is implemented to produce AC output(220[VAC], 60[Hz]). A tapped inductor filter with freewheeling diode is newly implemented in the output filter of the proposed full-bridge high frequency isolated ZVZCS PS-PWM DC-DC converter to suppress circulating current under the wide output voltage regulation range, thus to eliminate the switching and transformer turn-on/off over-short voltage or transient phenomena. Besides the efficiency of $93{\sim}97[%]$ is obtained over the wide output voltage regulation ranges and load variations.

THD Analysis of Output Voltage According to PWM Carriers in Single-Delta Bridge Cell MMC (Single-Delta Bridge Cell MMC의 전압합성을 위한 PWM 반송파 형태에 따른 출력전압의 THD 분석)

  • Jae-Myeong, Kim;Jae-Jung, Jung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.6
    • /
    • pp.526-534
    • /
    • 2022
  • The modular multilevel converter (MMC) has been widely applied to various industrial areas because of its various advantages and structural characteristics. Therefore, many methods for synthesizing the output voltage of MMC have been studied. Among these methods, phase-shifted pulse width modulation (PSPWM) is frequently used in MMC systems because it has diverse merits, such as excellent output qualities even with a small number of cells and uniform power distribution among cells. In this study, the total harmonic distortion (THD) of the output voltage is analyzed in accordance with the number of cells in one arm of a single-delta bridge cell MMC in order to compare PSPWM methods in terms of the THD of the output voltage. The physical characteristics of the triangle and sawtooth carrier waves used for the PSPWM and the mathematical modeling of output voltage are introduced. Then, the obtained results are verified through real-time simulation of a 1 MW single-delta bridge cell MMC system.

Half and Full-Bridge Cell based Stand-Alone Photovoltaic Multi-Level Inverter (하프ㆍ풀-브리지 셀을 이용한 독립형 태양광 멀티레벨 인버터)

  • Kang Feel-Soon;Oh Seok-Kyu;Park Sung-Jun;Kim Jang-Mok;Kim Cheul-U
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.5
    • /
    • pp.438-447
    • /
    • 2004
  • A new multilevel PWM inverter using a half-bridge and full-bridge cells is proposed for the use of stand-alone photovoltaic inverters. The configuration of the proposed multilevel PWM inverter is based on a prior 11-level shaped PWM inverter. Among three full-bridge cells employed in the prior inverter, one cell is substituted by a half-bridge cell. Owing to this simple alteration, the proposed inverter has three promising merits. First it increases the number of output voltage levels resulted in high quality output voltages. Second, it reduces two power switching devices by means of employing a half-bridge cell. Third, it reduces power imposed on a transformer connected with the half-bridge unit. That is to say, most power is transferred to loads via cascaded transformers connected with low switching inverters, which are used to synthesize the fundamental output voltage levels whereas the output of a transformer linked to a high switching inverter is used to improve the final output voltage waves; thus, it is desirable in the point of the improvement of the system efficiency. By comparing to the prior 11-level PWM inverter, it assesses the performance of the proposed inverter as a stand-alone photovoltaic inverter. The validity of the proposed inverter is verified by computer-aided simulations and experimental results.