• 제목/요약/키워드: Fuel processing

검색결과 438건 처리시간 0.031초

휴대용 직접 메탄올 연료전지 시스템 개발 (Development of portable DMFC systems)

  • 문고영;김혁;유황찬;노태근;이원호
    • 신재생에너지
    • /
    • 제3권1호
    • /
    • pp.46-53
    • /
    • 2007
  • Direct Methanol Fuel Cell, DMFC is a potential power source for portable IT application. DMFC works at low temperature ($<100^{\circ}C$) without fuel processing. Methanol has high energy density, fuel economy, and easiness to handle. This paper focuses high efficient catalyst to increase utilization in the electrode, new membrane reducing methanol crossover, new material parts, and optimization of system integration. Lightweight and small-sized DMFC based on new materials, efficient stack, and improved system control will be applied to the 50W prototype system for the notebook computer.

  • PDF

MPI 가솔린 기관용 인젝터의 분무 거동 및 미립화 특성에 관한 연구 (A Study on the Fuel Spray and Atomization Characteristics of MPI Gasoline Injector)

  • 서영호;이창식;이기형
    • 한국분무공학회지
    • /
    • 제1권4호
    • /
    • pp.32-39
    • /
    • 1996
  • Fuel spray in the MPI gasoline injector and its atomization characteristics are investigated with both macroscopic and microscopic visualization systems. The Bosch injector is inserted into an air-assist spray adapter which is designed to be fabricated and assembled easily. particle motion analysis system is used to measure the SMD of injector, where the assistant air pressure is varied from 0.0 to 1.5bar with fuel pressure 2.8bar. Droplet size decreased with higher air pressure and fine fuel spray with below $60{\mu}m$ of SMD is acquired at the assistant air pressure over 0.5bar.

  • PDF

아세톤 형광을 이용한 공연비 측정 기법 연구 (An Experimental Investigation of Air Fuel Ratio Measurement using Laser Induced Acetone Fluorescence)

  • 박승재;허환일;오승묵
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.353-356
    • /
    • 2002
  • Planar laser induced fluorescence(PLIF) has been widely used to obtain two dimensional fuel distribution. Preliminary investigation was performed to measure quantitative air excess ratio distribution in an engine fueled with LPG. It is known that fluorescence signal from acetone as a fluorescent tracer is less sensitive to oxygen quenching than other dopants. Acetone was excited by KrF excimer laser (248nm) and its fluorescence image was acquired by ICCD camera with a cut-of filter to suppress Mie scattering from the laser light. For the purpose of quantifying PLIF signal, an image processing method including the correction of laser sheet beam profile was suggested. Raw images were divided by each intensity of laser energy and profile of laser sheet beam. Inhomogeneous fluorescence images scaled with the reference data, which was taken by a calibration process, were converted to air excess ratio distribution. This investigation showed instantaneous quantitative measurement of planar air excess ratio distribution for gaseous fuel.

  • PDF

Sensitivity simulation on isotopic fissile measurement using neutron resonances

  • Lee, YongDeok;Ahn, Seong-Kyu;Choi, Woo-Seok
    • Nuclear Engineering and Technology
    • /
    • 제54권2호
    • /
    • pp.637-643
    • /
    • 2022
  • Uranium and plutonium are required to be accounted in spent fuel head-end and major recovery area in pyro-process for safeguards purpose. The possibility of neutron resonance technique, as a nondestructive analysis, was simulated on isotopic fissile analysis for large scale process. Neutron resonance technique has advantage to distinguish uranium from plutonium directly in mixture. Simulation was performed on U235 and Pu239 assay in spent fuel and for scoping examination of assembly type. The resonance energies were determined for U235 and Pu239. The linearity in the neutron transmission was examined for the selected resonance energies. In addition, the limit for detection was examined by changing sample density, thickness and content for actual application. Several factors were proposed for neutron production and the moderated neutron source was simulated for effective and efficient transmission measurement. From the simulation results, neutron resonance technique is promising to analyze U235 and Pu239 for spent fuel assembly. An accurate fissile assay will contribute to an increased safeguards for the pyro-processing system and international credibility on the reuse of fissile materials in the fuel cycle.

핵연료 집합체 노외성능시험의 절차와 결과에 대한 신뢰성확보를 위한 예비고찰; 횡방향 진동특성시험(I) (Preliminary Study for the Reliability Assurance on Results and Procedure of the Out-pile Mechanical Characterization Test for a Fuel Assembly; Lateral Vibration Test(I))

  • 이강희;윤경호;김형규
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1854-1858
    • /
    • 2007
  • The reliability assurance with respect to the test procedure and results of the out-pile mechanical performance test for the nuclear fuel assembly is an essential task to assure the test quality and to get a permission for fuel loading into the commercial reactor core. For the case of vibration test, which is carried out to obtain basic dynamic characteristics of the fuel assembly, proper management and appropriate calibration of instruments and devices used in the test, various efforts to minimize the possible error during the test and signal acquisition process are needed. Additionally, the deep understanding both of the theoretical assumption and simplification cation for the signal processing/modal analysis and of the functions of the devices used in the test were highly required. Finally, to verify the test result to represent the accurate natural characteristics of the structure, the proper correlation analysis between the theoretical and experimental method has to be carried out. In this study, the overall procedure and result of lateral vibration test for the fuel assembly's mechanical characterization were briefly introduced. A series of measures to assure and improve the reliability of the vibration test were discussed.

  • PDF

마이크로 연료 전지 분리판 디버링을 위한 Electro Polishing 가공 조건 최적화 (Optimization of Electro Polishing Processing Conditions for Deburring of Micro Fuel Cell bipolar plate)

  • 정재화;김병찬;김운용;조명우
    • Design & Manufacturing
    • /
    • 제11권3호
    • /
    • pp.51-55
    • /
    • 2017
  • Micro fuel cells have high reliability and long usage time. Among them, PEMFC (polymer Electrolyte Membrane Fuel Cell) is suitable as a portable power source because it is easy to fix electrolyte and simple structure. The bipolar plate, a key component of the fuel cell, is produced by cutting. In the case of micro fuel cell separator, burr is very small and the flow channel size in the separator is very small. Therefore, it is difficult to remove burrs in the usual way such as a brushing or ultra-sonic method. Therefore, this study proposed electrolytic polishing process and analyzed the characteristics of each condition by introducing the concept of roughness reduction rate. In addition, the ultrasonic process was added to analyze the effect of ultrasonic addition.

PLIF를 이용한 ATR 연소기 내부의 연료분포 측정 (Fuel Distribution Measurements in ATR Combustor using PLIF)

  • 양인영;진유인;양수석;박승재
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제23회 추계학술대회 논문집
    • /
    • pp.274-277
    • /
    • 2004
  • ATR 엔진 연소기 내부에서의 연료와 공기의 혼합성능은 연소 안정성이나 효율에 지배적인 요인이 된다. 본 연구에서는 ATR 모델 연소기에서의 혼합성능을 비교하기 위하여 두 유체의 속도 비$(r=v_a/v_f)$를 변화시키면서 연료분포를 측정하였다. 측정 방법으로는 2차원 연료분포를 얻기 위하여 널리 이용되는 평면레이저 유도형광기법과 화상처리 기법을 사용하여 연료분포 이미지를 얻었다. 측정된 연료분포 화상으로부터 공기속도/연료속도 비가 1에 가까울수록 연료 혼합성능이 떨어지는 특성을 관찰하였다.

  • PDF

심층 신경망 기법을 이용한 고체 산화물 연료전지 스택의 성능 예측 모델 (Performance Prediction Model of Solid Oxide Fuel Cell Stack Using Deep Neural Network Technique)

  • 이재윤;이스라엘 또레스 삐네다;잡 반 티엔;이동근;김영상;안국영;이영덕
    • 한국수소및신에너지학회논문집
    • /
    • 제31권5호
    • /
    • pp.436-443
    • /
    • 2020
  • The performance prediction model of a solid oxide fuel cell stack has been developed using deep neural network technique, one of the machine learning methods. The machine learning has been received much interest in various fields, including energy system mo- deling. Using machine learning technique can save time and cost requried in developing an energy system model being compared to the conventional method, that is a combination of a mathematical modeling and an experimental validation. Results reveal that the mean average percent error, root mean square error, and coefficient of determination (R2) range 1.7515, 0.1342, 0.8597, repectively, in maximum. To improve the predictability of the model, the pre-processing is effective and interpolative machine learning and application is more accurate than the extrapolative cases.

Powder Packing Behavior and Constrained Sintering in Powder Processing of Solid Oxide Fuel Cells (SOFCs)

  • Lee, Hae-Weon;Ji, Ho-Il;Lee, Jong-Ho;Kim, Byung-Kook;Yoon, Kyung Joong;Son, Ji-Won
    • 한국세라믹학회지
    • /
    • 제56권2호
    • /
    • pp.130-145
    • /
    • 2019
  • Widespread commercialization of solid oxide fuel cells (SOFCs) is expected to be realized in various application fields with the advent of cost-effective fabrication of cells and stacks in high volumes. Cost-reduction efforts have focused on production yield, power density, operation temperature, and continuous manufacturing. In this article, we examine several issues associated with processing for SOFCs from the standpoint of the bimodal packing model, considering the external constraints imposed by rigid substrates. Optimum compositions of composite cathode materials with high volume fractions of the second phase (particles dispersed in matrix) have been analyzed using the bimodal packing model. Constrained sintering of thin electrolyte layers is also discussed in terms of bimodal packing, with emphasis on the clustering of dispersed particles during anisotropic shrinkage. Finally, the structural transition of dispersed particle clusters during constrained sintering has been correlated with the structural stability of thin-film electrolyte layers deposited on porous solid substrates.

Effect of organic solvents on catalyst structure of PEM fuel cell electrode fabricated via electrospray deposition

  • Koh, Bum-Soo;Yi, Sung-Chul
    • Journal of Ceramic Processing Research
    • /
    • 제18권11호
    • /
    • pp.810-814
    • /
    • 2017
  • Proton exchange membrane fuel cells (PEMFCs) are some of the most efficient electrochemical energy sources for transportation applications because of their clean, green, and high efficiency characteristics. The optimization of catalyst layer morphology is considered a feasible approach to achieve high performance of PEMFC membrane electrode assembly (MEA). In this work, we studied the effect of the solvent on the catalyst layer of PEMFC MEAs fabricated using the electrostatic spray deposition method. The catalyst ink comprised of Pt/C, a Nafion ionomer, and a solvent. Two types of solvent were used: isopropyl alcohol (IPA) and dimethylformamide (DMF). Compared with the catalyst layer prepared using IPA-based ink, the catalyst layer prepared with DMF-based ink had a dense structure because the DMF dispersed the Pt/C-Nafion agglomerates smaller and more homogeneously. The size distribution of the agglomerates in catalyst ink was confirmed through Dynamic Light Scattering (DLS) and the microstructure of the catalyst layer was compared using field emission scanning electron microscopy (FE-SEM). In addition, the electrochemical investigation was performed to evaluate the solvent effect on the fuel cell performance. The catalyst layer prepared with DMF-based ink significantly enhanced the cell performance (1.2 A cm-2 at 0.5 V) compared with that fabricated using IPA-based ink (0.5 A cm-2 at 0.5 V) due to the better dispersion and uniform agglomeration on the catalyst layer.