• Title/Summary/Keyword: Fuel flexibility

Search Result 81, Processing Time 0.035 seconds

Feasibility study of fuel flexibility on Gas Turbine for power Generation (발전용 가스터빈의 연료다변화 연구)

  • Park, Seik;Joo, YongJin
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.273-274
    • /
    • 2015
  • Fuel flexibility remains a critical issue related the development of low emission lean premixed combustion system and the combustion adjustment technique. To cover the this work scope with our own technology, KEPCO had focused on operational technology related to GT combustion control. The main purpose of this paper is summary of the research works on fuel flexibility in KRPCO Research Institute recently. Furthermore, the specifications of test facility and research work in the future in KEPRI were also explained briefly for expected collaborative research team in Korea.

  • PDF

The fuel flexibility of CFBC boiler (순환유동층보일러의 연료유연성 실증연구)

  • Bae, Dal-Hee;Shun, Do-Won
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.145-148
    • /
    • 2008
  • Fuel flexibility of CFBC boiler was examined. Combustion characteristics of low grade coal, coal sludge, coal RDF mixture and RDF were compared. The operation result of a commercial 130TPH CFBC co-generation boiler burning a low grade Chinese coal were analysed. Burning characteristics of coal/RDF mixture and coal and industrial sludge mixture were studied in a 0.1MWth scale CFBC test rig. Also RDF fuel were tested in a 8TPH CFBC test facility. Though fuel characteristics were different, the combustion modes were all very stable. The temperature were maintained in between $800-950^{\circ}C$.

  • PDF

Electrochemical Oxidation of Hydrazine in Membraneless Fuel Cells

  • Durga, S.;Ponmani, K.;Kiruthika, S.;Muthukumaran, B.
    • Journal of Electrochemical Science and Technology
    • /
    • v.5 no.3
    • /
    • pp.73-81
    • /
    • 2014
  • This paper describes the continuous flow operation of membraneless sodium perborate fuel cell using acid/alkaline bipolar electrolyte. Here, hydrazine is used as a fuel and sodium perborate is used as an oxidant under Alkaline-acid media configuration. Sodium perborate affords hydrogen peroxide in aqueous medium. In our operation, the laminar flow based microfluidic membranleless fuel cell achieved a maximum power density of $27.2mW\;cm^{-2}$ when using alkaline hydrazine as the anolyte and acidic perborate as the catholyte at room temperature with a fuel mixture flow rate of $0.3mL\;min^{-1}$. The simple planar structured membraneless sodium perborate fuel cell enables high design flexibility and easy integration of the microscale fuel cell into actual microfluidic systems and portable power applications.

DEVELOPMENT AND VALIDATION OF A NUCLEAR FUEL CYCLE ANALYSIS TOOL: A FUTURE CODE

  • Kim, S.K.;Ko, W.I.;Lee, Yoon Hee
    • Nuclear Engineering and Technology
    • /
    • v.45 no.5
    • /
    • pp.665-674
    • /
    • 2013
  • This paper presents the development and validation methods of the FUTURE (FUel cycle analysis Tool for nUcleaR Energy) code, which was developed for a dynamic material flow evaluation and economic analysis of the nuclear fuel cycle. This code enables an evaluation of a nuclear material flow and its economy for diverse nuclear fuel cycles based on a predictable scenario. The most notable virtue of this FUTURE code, which was developed using C# and MICROSOFT SQL DBMS, is that a program user can design a nuclear fuel cycle process easily using a standard process on the canvas screen through a drag-and-drop method. From the user's point of view, this code is very easy to use thanks to its high flexibility. In addition, the new code also enables the maintenance of data integrity by constructing a database environment of the results of the nuclear fuel cycle analyses.

AREVA NP's enhanced accident-tolerant fuel developments: Focus on Cr-coated M5 cladding

  • Bischoff, Jeremy;Delafoy, Christine;Vauglin, Christine;Barberis, Pierre;Roubeyrie, Cedric;Perche, Delphine;Duthoo, Dominique;Schuster, Frederic;Brachet, Jean-Christophe;Schweitzer, Elmar W.;Nimishakavi, Kiran
    • Nuclear Engineering and Technology
    • /
    • v.50 no.2
    • /
    • pp.223-228
    • /
    • 2018
  • AREVA NP (Courbevoie, Paris, France) is actively developing several enhanced accident-tolerant fuels cladding concepts ranging from near-term evolutionary (Cr-coated zirconium alloy cladding) to long-term revolutionary (SiC/SiC composite cladding) solutions, relying on its worldwide teams and partnerships, with programs and irradiations planned both in Europe and the United States. The most advanced and mature solution is a dense, adherent chromium coating on zirconium alloy cladding, which was initially developed along with the CEA and EDF in the French joint nuclear R&D program. The evaluation of the out-of-pile behavior of the Cr-coated cladding showed excellent results, suggesting enhanced reliability, enhanced operational flexibility, and improved economics in normal operating conditions. For example, because chromium is harder than zirconium, the Cr coating provides the cladding with a significantly improved wear resistance. Furthermore, Cr-coated samples exhibit extremely low corrosion kinetics in autoclave and prevents accelerated corrosion in harsh environments such as in water with 70 ppm Li leading to improved operational flexibility. Finally, AREVA NP has fabricated a physical vapor deposition prototype machine to coat full-length cladding tubes. This machine will be used for the manufacturing of full-length lead test rods in commercial reactors by 2019.

Solid oxide fuel cell and application of proton conducting ceramics (고체산화물 연료전지와 양성자 전도성 세라믹 물질의 응용)

  • Jeong, Donghwi;Kim, Guntae
    • Ceramist
    • /
    • v.21 no.4
    • /
    • pp.366-377
    • /
    • 2018
  • Solid oxide fuel cells (SOFCs) are promising eco-friendly energy conversion system due to their high efficiency, low pollutant emission and fuel flexibility. High operating temperatures, however, leads to the crucial drawbacks such as incompatibility between the components and high thermal stress. Proton-conducting ceramic fuel cells (PCFCs) with proton-conducting oxide (PCO) materials are new types of fuel cells that can solve the problems of conventional SOFCs. Many studies have been proceeded to improve the performance of electrolytes and electrodes, and triple conductive oxides (TCOs) have attracted significant attention as high performance PCFC electrodes.

A Study on Operational Concept of Solar Powered HALE UAV Using Directed-Energy (지향성 에너지를 이용한 고고도 장기체공 태양광 무인항공기 운용 개념 연구)

  • Ahn, Hyo-Jung
    • New & Renewable Energy
    • /
    • v.7 no.3
    • /
    • pp.59-66
    • /
    • 2011
  • Recently, an UAV using green energy for propulsion has been developed due to exhaustion of fossil fuel. This aircraft runs on electric motors rather than internal combustion engines, with electricity coming from fuel cells, solar cells, ultracapacitors, and/or batteries. Especially solar cells are installed in HALE UAV and flight tests are performed in the stratosphere. Although the solar powered UAV has the advantage of zero emission, its energy conversion efficiency is low and operation time is limited. Therefore, the solar powered UAV has been designed to operate with the secondary battery obtaining flexibility of energy management. In this study, we suggest the new operational concept of the solar powered UAV using directed-energy rayed from the surface of earth to UAV. An UAV is able to secure additional power through attaching solar cell to the lower surface of elevator. As a result, the additional energy supplied by directed-energy can improve the energy management and operational flexibility of the solar powered UAV.

Recent Developments of Polymer Electrolyte Membrane Fuel Cell Design

  • Wonchan Hwang;Yung-Eun Sung
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.120-130
    • /
    • 2023
  • PEMFC has high potential for future development due to its high energy density, eco-friendliness, and high energy efficiency. When it becomes small, light and flexible, it can be competitive as an energy source for portable devices or flexible electronic devices. However, the use of hard and heavy materials for structural rigidity and uniform contact pressure transmission has become an obstacle to reducing the weight and flexibility of PEMFCs. This review intends to provide an example of the application of a new structure and material for lightweight and flexibility. As a lightweight PEMFC, a tubular design is presented and structural advantages through numerical modeling are explained. Manufacturing methods to realize the structural advantages and possibilities of tubular PEMFCs are discussed. In addition, the materials and manufacturing processes used to fabricate lightweight and flexible PEMFCs are described and factors affecting performance are analyzed. Strategies and structural improvements of light and flexible movements are discussed according to the component parts.

Competitive electrochemical oxidation of reformate gas in SOFCs (고체 산화물 연료전지 음극에서 개질 가스의 경쟁적 전기화학 반응)

  • Kim, Yong-Min;Bae, Joong-Myeon;Bae, Gyu-Jong;Kim, Jung-Hyun;Lee, Chang-Bo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.5-8
    • /
    • 2008
  • SOFC (Solid oxide fuel cell) has an advantage in the term of fuel flexibility, comparing with other kinds of fuel cells. In SOFC and fuel reformer cooperation system, the reformate gas with the various $H_2$/CO ratios is delivered into the anode of SOFC. In this situation, electrochemical oxidation reactions of the reformate gas in the anode are complex and competitive. In this paper, the effects of the composition of $H_2$ and CO on the overall electrochemical oxidation at Ni-YSZ anode are studied by testing the open circuit voltage (OCV) and current-voltage characteristics of single cells.

  • PDF