DOI QR코드

DOI QR Code

Solid oxide fuel cell and application of proton conducting ceramics

고체산화물 연료전지와 양성자 전도성 세라믹 물질의 응용

  • Received : 2018.11.25
  • Accepted : 2018.12.17
  • Published : 2018.12.30

Abstract

Solid oxide fuel cells (SOFCs) are promising eco-friendly energy conversion system due to their high efficiency, low pollutant emission and fuel flexibility. High operating temperatures, however, leads to the crucial drawbacks such as incompatibility between the components and high thermal stress. Proton-conducting ceramic fuel cells (PCFCs) with proton-conducting oxide (PCO) materials are new types of fuel cells that can solve the problems of conventional SOFCs. Many studies have been proceeded to improve the performance of electrolytes and electrodes, and triple conductive oxides (TCOs) have attracted significant attention as high performance PCFC electrodes.

Keywords

References

  1. M. Winter, and R. J. Brodd, "What are batteries, fuel cells, and supercapacitors?" Chem. Rev. 104 [10] 4245-4270 (2004) https://doi.org/10.1021/cr020730k
  2. I.K. Kapdan, and F. Kargi. "Bio-hydrogen production from waste materials" Enzyme Microb. Technol. 38 [5] 569-582 (2006) https://doi.org/10.1016/j.enzmictec.2005.09.015
  3. R. O'Hayre, S.-W. Cha, W. Colella and F.B. Prinz "Fuel cell fundamentals" 3rd edition, pp 3-18, Wiley 2016
  4. G. Pepermans, J. Driesen, D. Haeseldonckx, R. Belmans and W. D'haeseller. "Distributed generation: definition, benefits and issues" Energy Policy. 33 [6] 787-798 (2005) https://doi.org/10.1016/j.enpol.2003.10.004
  5. M.C. Williams, J.P. Strakey and S.C. Singhal. "U.S. distributed generation fuel cell program" J. Power Sources. 131 [1-2] 79-85 (2004) https://doi.org/10.1016/j.jpowsour.2004.01.021
  6. S. Sengodan, S.Choi, A. Jun, T. H. Shin, Y.-W.Ju, H. Y. Jeong, J. Shin, J. T. S. Irvine, and G.Kim, "Layered oxygen-deficient double perovskite as an efficient and stable anode for direct hydrocarbon solid oxide fuel cells." Nat. Mater. 14, 205-209. (2014)
  7. S. Choi, S. Yoo, J. Kim, S. Park, A. Jun, S. Sengodan, J.Kim, J. Shin, H. Y. Jeong, Y. Choi, G. Kim, and M. Liu, Highly efficient and robust cathode materials for low-temperature solid oxide fuel cells: $PrBa_{0.5}Sr_{0.5}Co_{2-x}Fe_{x}O_{5+{\delta}}$. Sci. Rep. 3, 2426. (2013) https://doi.org/10.1038/srep02426
  8. M. Mogensen, K. V. Jensen, M.J. Jorgensen, and S. Primdahl, "Progress in understanding SOFC electrodes." Solid State Ionics. 150 [1-2] 123-129 (2002) https://doi.org/10.1016/S0167-2738(02)00269-2
  9. S. Park, J. M. Vohs, and R.J.Gorte, "Direct oxidation of hydrocarbons in a solid-oxide fuel cell" Nature. 404, 265-267 (2000) https://doi.org/10.1038/35005040
  10. S. Tao, and J. T. S. Irvine, "A redox-stable efficient anode for solid-oxide fuel cells." Nat. Mater. 2, 320-323 (2003) https://doi.org/10.1038/nmat871
  11. N. Q. Minh, "Ceramic Fuel Cells." J. Am.Ceram.Soc. 76 [3] 563-588 (1993) https://doi.org/10.1111/j.1151-2916.1993.tb03645.x
  12. M. D. Gross, J.M.Vohs, and R.J.Gorte, "Recent progress in SOFC anodes for direct utilization of hydrocarbons." J. Mater.Chem. 17, 3071-3077 (2007) https://doi.org/10.1039/b702633a
  13. https://www.knrec.or.kr/energy/fuelcell_summary.aspx
  14. B.C.H. Steele, "Material science and engineering: The enabling technology for the commercialisation of fuel cell systems" J. Mater.Sci. 36 [5] 1053-1068. (2001) https://doi.org/10.1023/A:1004853019349
  15. S. B. Adler, "Factors Governing Oxygen Reduction in Solid Oxide Fuel Cell Cathodes" Chem.Rev. 104 [10] 4791-4844 (2004) https://doi.org/10.1021/cr020724o
  16. D. M. Bastidas, S.Tao, and J.T.S.Irvine, "A symmetrical solid oxide fuel cell demonstrating redox stable perovskite electrodes" J. Mater. Chem. 16, 1603-1605 (2006) https://doi.org/10.1039/b600532b
  17. E.D. Wachsman, and K.T. Lee, "Lowering the Temperature of Solid Oxide Fuel Cells." Science. 334 [6058] 935-939, (2011) https://doi.org/10.1126/science.1204090
  18. J. H. Shim, "Ceramics breakthrough." Nature Energy. 3, 168-169 (2018) https://doi.org/10.1038/s41560-018-0110-7
  19. S. Stotz and C. Wagner. "The solubility of water vapor and hydrogen in solid oxides" (in Ger.) Ber. Bunsenges. Phys. Chem. 70 [8] 781-88 (1966)
  20. H. Iwahara, T. Esaka, H. Uchida and N. Maeda, "Proton conduction in sintered oxides and its application to steam electrolysis for hydrogen production" Solid State Ionics. 3-4, 359-363 (1981) https://doi.org/10.1016/0167-2738(81)90113-2
  21. H. Iwahara, "Proton conducting ceramics and their applications" Solid State Ionics. 86-88, 9-15 (1996) https://doi.org/10.1016/0167-2738(96)00087-2
  22. K.D. Kreuer, "Proton Conductivity: Materials and Applications" Chem. Mater. 8 [3] 610-641 (1996) https://doi.org/10.1021/cm950192a
  23. Y. Matsuzaki, Y. Tachikawa, T. Somekawa, T. Hatae, H. Matsumoto, S. Taniguchi and K. Sasaki, "Effect of proton-conduction in electrolyte on electric efficiency of multi-stage solid oxide fuel cells" Sci. Rep. 5, 12640 (2015) https://doi.org/10.1038/srep12640
  24. D. Poetzsch, R. Merkle and J. Maier, "Proton uptake in the $H^+$-SOFC cathode material $Ba_{0.5}Sr_{0.5}Fe_{0.8}Zn_{0.2}O_{3-{\delta}}$: transition from hydration to hydrogenation with increasing oxygen partial pressure" Faraday Discuss. 182, 129-143 (2015) https://doi.org/10.1039/C5FD00013K
  25. R. Zohourian, R. Merkle and J. Maier, "Proton uptake into the protonic cathode material $BaCo_{0.4}Fe_{0.4}Zr_{0.2}O_{3-{\delta}}$ and comparison to protonic electrolyte materials" Solid State Ionics. 299, 64-69 (2016)
  26. D. Poetzsch, R. Merkle and J. Maier, "Stoichiometry Variation in Materials with Three Mobile Carriers-Thermodynamics and Transport Kinetics Exemplified for Protons, Oxygen Vacancies, and Holes" Adv. Funct. Mater. 25 [10] 1542-1557 (2015) https://doi.org/10.1002/adfm.201402212
  27. F. Krug, T. Schober, and T. Springer, "In situ measurements of the water uptake in Yb doped $SrCeO_{3-{\delta}}$" Solid State Ionics. 81 [1-2] 111-118 (1995) https://doi.org/10.1016/0167-2738(95)00168-6
  28. G. Seifert, S. Hazebroucq and W. Munch, "Quantum Molecular Dynamic Simulation of Proton conducting Materials"; pp 437-452 in Device and Materials Modeling in PEM Fuel Cells. Ed. by S. J. Paddison and K. S. Promislow, Springer, 2009
  29. T. Norby and Y. Larring "Concentration and transport of protons in oxides" Curr. Opin. Solid State Mater. Sci. 2, [5] 593-599 (1997) https://doi.org/10.1016/S1359-0286(97)80051-4
  30. H. Matsumoto, Y. Kawasaki, N. Ito, M. Enoki and T. Ishihara, "Relation Between Electrical Conductivity and Chemical Stability of $BaCeO_3$-Based Proton Conductors with Different Trivalent Dopants" Electrochem. Solid-State Lett. 10 [4], B77-B80. (2007) https://doi.org/10.1149/1.2458743
  31. H. Iwahara, T. Yajima and H. Ushida "Effect of ionic radii of dopants on mixed ionic conduction ($H^+\;+\;0^{2-}$) in $BaCeO_3$-based electrolytes" Solid State Ionics, 70-71, 267-271 (1994) https://doi.org/10.1016/0167-2738(94)90321-2
  32. K. D. Kreuer, "Aspects of the formation and mobility of protonic charge carriers and the stability of perovskite-type oxides" Solid State Ionics. 125, [1-4] 285-302 (1999) https://doi.org/10.1016/S0167-2738(99)00188-5
  33. Z. Sun, E. Fabbri, L. Bi and E. Traversa, "Lowering grain boundary resistance of $BaZr_{0.8}Y_{0.2}O_{3-{\delta}}$ with $LiNO_3$ sintering-aid improves proton conductivity for fuel cell operation" Phys. Chem. Chem. Phys. 13, 7692-7700 (2011) https://doi.org/10.1039/C0CP01470B
  34. D. Pergolesi, E. Fabbri, A. D'Epifanio, E. Di Bartolomeo, A. Tebano, S. Sanna, S. Licoccia, G. Balestrino and E. Traversa, "High proton conduction in grain-boundary-free yttrium-doped barium zirconate films grown by pulsed laser deposition" Nat. Mater. 9. 846-852 (2010) https://doi.org/10.1038/nmat2837
  35. K. Bae, S. M. Choi, J. Hwang, J.-W. Son and J. H. Shim, "Proton Conduction in Highly Textured $Y:BaZrO_3\;and\;Y:BaZrCeO_3$ Thin Films Fabricated by Pulsed Laser Deposition" ECS Transactions, 45 [1] 129-133 (2012) https://doi.org/10.1149/1.3701301
  36. K. Bae, D. Y. Jang, H. Jung, J. W. Kim, J.-W. Son, and J. H. Shim "Micro-Protonic Ceramic Fuel Cells with $Y:BaZrO_3$ Electrolyte Prepared by Pulsed Laser Deposition (PLD)" ECS Transactions, 57 [1] 935-938 (2013) https://doi.org/10.1149/05701.0935ecst
  37. K. Katahira, Y. Kohchi, T. Shimura and H. Iwahara, "Protonic conduction in Zr-substituted $BaCeO_3$", Solid State Ionics, 138 [1-2] 91-98 (2000) https://doi.org/10.1016/S0167-2738(00)00777-3
  38. L. Yang, S. Wang, K. Blinn, M. Liu, Z, Liu, Z. Cheng and M. Liu, "Enhanced Sulfur and Coking Tolerance of a Mixed Ion Conductor for SOFCs: $BaZr_{0.1}Ce_{0.7}Y_{0.2-x}Yb_{x}O_{3-d}$" Science, 326 [5949] 126-129 (2009) https://doi.org/10.1126/science.1174811
  39. G. Kim, S. Wang, A. J. Jacobson, L. Reimus, P.Brodersen and C. A. Mims, "Rapid oxygen ion diffusion and surface exchange kinetics in $PrBaCo_2O_{5+x}$ with a perovskite related structure and ordered A cations." J. Mater.Chem. 17 [24] 2500-2505 (2007) https://doi.org/10.1039/b618345j
  40. A. J. Jacobson, "Materials for Solid Oxide Fuel Cells." Chem.Mater. 22 [3] 660-674 (2010) https://doi.org/10.1021/cm902640j
  41. A. Tarancon, S. J. Skinner, R. J. Chater, F. Hernandez-Ramarez and J. A. Kilner, "Layered perovskites as promising cathodes for intermediate temperature solid oxide fuel cells." J. Mater.Chem. 17, 3175-3181. (2007) https://doi.org/10.1039/b704320a
  42. J.-H. Kim, A. Manthiram, "Layered $LnBaCo_2O_{5+{\delta}}$ Perovskite Cathodes for Solid Oxide Fuel Cells: An Overview and Perspective." J. Mater.Chem.A. 3, 24195-24210 (2015) https://doi.org/10.1039/C5TA06212H
  43. W. Jung, K. L. Gu, Y. Choi and S. M. Haile, "Robust nanostructures with exceptionally high electrochemical reaction activity for high temperature fuel cell electrodes" Energy Environ. Sci. 7, 1685-1692 (2014) https://doi.org/10.1039/C3EE43546F
  44. J. Kim, W. Seo, J. Shin, M. Liu and G. Kim, "Composite cathodes composed of $NdBa_{0.5}Sr_{0.5}Co_2O_{5+{\delta}}\;and\;Ce_{0.9}Gd_{0.1}O_{1.95}$ for intermediate-temperature solid oxide fuel cells", J. Mater. Chem. A, 1, 515-519 (2013) https://doi.org/10.1039/C2TA00025C
  45. J. Kim, S. Sengodan, G. Kwon, D. Ding, J. Shin, M. Liu and G. Kim "Triple-Conducting Layered Perovskites as Cathode Materials for Proton-Conducting Solid Oxide Fuel Cells" ChemSusChem 7 [10] 2811-2815 (2014) https://doi.org/10.1002/cssc.201402351
  46. A. Grimaud, F. Mauvy, J. M. Bassat, S. Fourcade, L. Rocheron, M. Marrony and J. C. Grenier, "Hydration Properties and Rate Determining Steps of the Oxygen Reduction Reaction of Perovskite-Related Oxides as $H^+$-SOFC Cathodes" J. Electrochem. Soc. 159 [6] B683-B694 (2012) https://doi.org/10.1149/2.101205jes
  47. B. Lin, S. Zhang, L. Zhang, L. Bi, H. Ding, X. Liu, J. Gao and G. Meng, "Prontonic ceramic membrane fuel cells with layered $GdBaCo_2O_{5+x}$ cathode prepared by gel-casting and suspension spray" J. Power Sources. 177 [2] 330-333 (2008) https://doi.org/10.1016/j.jpowsour.2007.11.109
  48. B. Lin, Y. Dong, R. Yan, S. Zhang, M. Hu, Y. Zhou and G. Meng, "In situ screen-printed $BaZr_{0.1}Ce_{0.7}Y_{0.2}O_{3-{\delta}}$ electrolyte-based protonic ceramic membrane fuel cells with layered $SmBaCo_2O_{5+x}$ cathode" J. Power Sources 186 [2] 446-449 (2009) https://doi.org/10.1016/j.jpowsour.2008.09.120
  49. M. Jin, X. Zhang, Y. Qiu and J. Sheng, "Layered $PrBaCo_2O_{5+{\delta}}$ perovskite as a cathode for protonconducting solid oxide fuel cells" J. Alloys Compd. 494 [1-2] 359-361 (2010) https://doi.org/10.1016/j.jallcom.2010.01.040
  50. H. Ding and X. Xue, "Proton conducting solid oxide fuel cells with layered $PrBa_{0.5}Sr_{0.5}Co_2O_{5+{\delta}}$ perovskite cathode" Int. J. Hydrogen Energy 35 [6], 2486-2490 (2010) https://doi.org/10.1016/j.ijhydene.2010.01.046
  51. H. Ding, X. Xue, X. Liu and G. Meng, "A novel layered perovskite cathode for proton conducting solid oxide fuel cells" J. Power Sources 195 [3] 775-778 (2010) https://doi.org/10.1016/j.jpowsour.2009.08.022
  52. S. Choi, C. J. Kucharczyk, Y. Liang, X. Zhang, I. Takeuchi, H.-I. Ji and S. M. Haile, "Exceptional power density and stability at intermediate temperatures in protonic ceramic fuel cells" Nat. Energy. 3, 202-210 (2018) https://doi.org/10.1038/s41560-017-0085-9
  53. R. Mukundan, P. K. Davies and W. L. Worrell, "Electrochemical Characterization of Mixed Conducting $Ba(Ce_{0.8-y}PryGd_{0.2})O_{2.9}$ Cathodes" J. Electrochem. Soc. 148 [1] A82-A86 (2001) https://doi.org/10.1149/1.1344520
  54. A. Magraso, R. Haugsrud, M. Segarra and T. Norby, "Defects and transport in Gd-doped $BaPrO_3$" J. Electroceramics 23 [1] 80-88 (2009)
  55. M. Shang, J. Tong and R. O'Hayre, "A promising cathode for intermediate temperature protonic ceramic fuel cells: $BaCo_{0.4}Fe_{0.4}Zr_{0.2}O_{3-{\delta}}$" RSC Adv. 3 15769-15775 (2013) https://doi.org/10.1039/c3ra41828f
  56. C. Duan, J. Tong, M. Shang, S. Nikodemski, M. Sanders, S. Ricote, A. Almansoori and R. O'Hayre, "Readily processed protonic ceramic fuel cells with high performance at low temperatures" Science. 349 [6254] 1321-1326 (2015) https://doi.org/10.1126/science.aab3987
  57. H. An, H.-W. Lee, B.-K. Kim, J.-W. Son, K. J. Yoon, H. Kim, D. Shin, H.-I. Ji and J.-H. Lee "A $5\;{\times}\;5\;cm^2$ protonic ceramic fuel cell with a power density of $1.3Wcm^{-2}\;at\;600^{\circ}C$" Nature Energy 3, 870-875 (2018) https://doi.org/10.1038/s41560-018-0230-0

Cited by

  1. Phase Evolution, Electrical Properties, and Conduction Mechanism of Ca12Al14-xGaxO33 (0 ≤ x ≤ 14) Ceramics Synthesized by a Glass Crystallization Meth vol.60, pp.4, 2021, https://doi.org/10.1021/acs.inorgchem.0c03344