Browse > Article
http://dx.doi.org/10.31613/ceramist.2018.21.4.05

Solid oxide fuel cell and application of proton conducting ceramics  

Jeong, Donghwi (UNIST)
Kim, Guntae (UNIST)
Publication Information
Ceramist / v.21, no.4, 2018 , pp. 366-377 More about this Journal
Abstract
Solid oxide fuel cells (SOFCs) are promising eco-friendly energy conversion system due to their high efficiency, low pollutant emission and fuel flexibility. High operating temperatures, however, leads to the crucial drawbacks such as incompatibility between the components and high thermal stress. Proton-conducting ceramic fuel cells (PCFCs) with proton-conducting oxide (PCO) materials are new types of fuel cells that can solve the problems of conventional SOFCs. Many studies have been proceeded to improve the performance of electrolytes and electrodes, and triple conductive oxides (TCOs) have attracted significant attention as high performance PCFC electrodes.
Keywords
Protonic ceramic fuel cell; Fuel cell;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. Matsuzaki, Y. Tachikawa, T. Somekawa, T. Hatae, H. Matsumoto, S. Taniguchi and K. Sasaki, "Effect of proton-conduction in electrolyte on electric efficiency of multi-stage solid oxide fuel cells" Sci. Rep. 5, 12640 (2015)   DOI
2 D. Poetzsch, R. Merkle and J. Maier, "Proton uptake in the $H^+$-SOFC cathode material $Ba_{0.5}Sr_{0.5}Fe_{0.8}Zn_{0.2}O_{3-{\delta}}$: transition from hydration to hydrogenation with increasing oxygen partial pressure" Faraday Discuss. 182, 129-143 (2015)   DOI
3 R. Zohourian, R. Merkle and J. Maier, "Proton uptake into the protonic cathode material $BaCo_{0.4}Fe_{0.4}Zr_{0.2}O_{3-{\delta}}$ and comparison to protonic electrolyte materials" Solid State Ionics. 299, 64-69 (2016)
4 D. Poetzsch, R. Merkle and J. Maier, "Stoichiometry Variation in Materials with Three Mobile Carriers-Thermodynamics and Transport Kinetics Exemplified for Protons, Oxygen Vacancies, and Holes" Adv. Funct. Mater. 25 [10] 1542-1557 (2015)   DOI
5 F. Krug, T. Schober, and T. Springer, "In situ measurements of the water uptake in Yb doped $SrCeO_{3-{\delta}}$" Solid State Ionics. 81 [1-2] 111-118 (1995)   DOI
6 G. Seifert, S. Hazebroucq and W. Munch, "Quantum Molecular Dynamic Simulation of Proton conducting Materials"; pp 437-452 in Device and Materials Modeling in PEM Fuel Cells. Ed. by S. J. Paddison and K. S. Promislow, Springer, 2009
7 T. Norby and Y. Larring "Concentration and transport of protons in oxides" Curr. Opin. Solid State Mater. Sci. 2, [5] 593-599 (1997)   DOI
8 H. Matsumoto, Y. Kawasaki, N. Ito, M. Enoki and T. Ishihara, "Relation Between Electrical Conductivity and Chemical Stability of $BaCeO_3$-Based Proton Conductors with Different Trivalent Dopants" Electrochem. Solid-State Lett. 10 [4], B77-B80. (2007)   DOI
9 K. D. Kreuer, "Aspects of the formation and mobility of protonic charge carriers and the stability of perovskite-type oxides" Solid State Ionics. 125, [1-4] 285-302 (1999)   DOI
10 H. Iwahara, T. Yajima and H. Ushida "Effect of ionic radii of dopants on mixed ionic conduction ($H^+\;+\;0^{2-}$) in $BaCeO_3$-based electrolytes" Solid State Ionics, 70-71, 267-271 (1994)   DOI
11 K. Bae, D. Y. Jang, H. Jung, J. W. Kim, J.-W. Son, and J. H. Shim "Micro-Protonic Ceramic Fuel Cells with $Y:BaZrO_3$ Electrolyte Prepared by Pulsed Laser Deposition (PLD)" ECS Transactions, 57 [1] 935-938 (2013)   DOI
12 Z. Sun, E. Fabbri, L. Bi and E. Traversa, "Lowering grain boundary resistance of $BaZr_{0.8}Y_{0.2}O_{3-{\delta}}$ with $LiNO_3$ sintering-aid improves proton conductivity for fuel cell operation" Phys. Chem. Chem. Phys. 13, 7692-7700 (2011)   DOI
13 D. Pergolesi, E. Fabbri, A. D'Epifanio, E. Di Bartolomeo, A. Tebano, S. Sanna, S. Licoccia, G. Balestrino and E. Traversa, "High proton conduction in grain-boundary-free yttrium-doped barium zirconate films grown by pulsed laser deposition" Nat. Mater. 9. 846-852 (2010)   DOI
14 K. Bae, S. M. Choi, J. Hwang, J.-W. Son and J. H. Shim, "Proton Conduction in Highly Textured $Y:BaZrO_3\;and\;Y:BaZrCeO_3$ Thin Films Fabricated by Pulsed Laser Deposition" ECS Transactions, 45 [1] 129-133 (2012)   DOI
15 K. Katahira, Y. Kohchi, T. Shimura and H. Iwahara, "Protonic conduction in Zr-substituted $BaCeO_3$", Solid State Ionics, 138 [1-2] 91-98 (2000)   DOI
16 L. Yang, S. Wang, K. Blinn, M. Liu, Z, Liu, Z. Cheng and M. Liu, "Enhanced Sulfur and Coking Tolerance of a Mixed Ion Conductor for SOFCs: $BaZr_{0.1}Ce_{0.7}Y_{0.2-x}Yb_{x}O_{3-d}$" Science, 326 [5949] 126-129 (2009)   DOI
17 W. Jung, K. L. Gu, Y. Choi and S. M. Haile, "Robust nanostructures with exceptionally high electrochemical reaction activity for high temperature fuel cell electrodes" Energy Environ. Sci. 7, 1685-1692 (2014)   DOI
18 A. J. Jacobson, "Materials for Solid Oxide Fuel Cells." Chem.Mater. 22 [3] 660-674 (2010)   DOI
19 A. Tarancon, S. J. Skinner, R. J. Chater, F. Hernandez-Ramarez and J. A. Kilner, "Layered perovskites as promising cathodes for intermediate temperature solid oxide fuel cells." J. Mater.Chem. 17, 3175-3181. (2007)   DOI
20 J.-H. Kim, A. Manthiram, "Layered $LnBaCo_2O_{5+{\delta}}$ Perovskite Cathodes for Solid Oxide Fuel Cells: An Overview and Perspective." J. Mater.Chem.A. 3, 24195-24210 (2015)   DOI
21 J. Kim, W. Seo, J. Shin, M. Liu and G. Kim, "Composite cathodes composed of $NdBa_{0.5}Sr_{0.5}Co_2O_{5+{\delta}}\;and\;Ce_{0.9}Gd_{0.1}O_{1.95}$ for intermediate-temperature solid oxide fuel cells", J. Mater. Chem. A, 1, 515-519 (2013)   DOI
22 J. Kim, S. Sengodan, G. Kwon, D. Ding, J. Shin, M. Liu and G. Kim "Triple-Conducting Layered Perovskites as Cathode Materials for Proton-Conducting Solid Oxide Fuel Cells" ChemSusChem 7 [10] 2811-2815 (2014)   DOI
23 A. Grimaud, F. Mauvy, J. M. Bassat, S. Fourcade, L. Rocheron, M. Marrony and J. C. Grenier, "Hydration Properties and Rate Determining Steps of the Oxygen Reduction Reaction of Perovskite-Related Oxides as $H^+$-SOFC Cathodes" J. Electrochem. Soc. 159 [6] B683-B694 (2012)   DOI
24 B. Lin, S. Zhang, L. Zhang, L. Bi, H. Ding, X. Liu, J. Gao and G. Meng, "Prontonic ceramic membrane fuel cells with layered $GdBaCo_2O_{5+x}$ cathode prepared by gel-casting and suspension spray" J. Power Sources. 177 [2] 330-333 (2008)   DOI
25 G. Pepermans, J. Driesen, D. Haeseldonckx, R. Belmans and W. D'haeseller. "Distributed generation: definition, benefits and issues" Energy Policy. 33 [6] 787-798 (2005)   DOI
26 M. Winter, and R. J. Brodd, "What are batteries, fuel cells, and supercapacitors?" Chem. Rev. 104 [10] 4245-4270 (2004)   DOI
27 I.K. Kapdan, and F. Kargi. "Bio-hydrogen production from waste materials" Enzyme Microb. Technol. 38 [5] 569-582 (2006)   DOI
28 R. O'Hayre, S.-W. Cha, W. Colella and F.B. Prinz "Fuel cell fundamentals" 3rd edition, pp 3-18, Wiley 2016
29 M.C. Williams, J.P. Strakey and S.C. Singhal. "U.S. distributed generation fuel cell program" J. Power Sources. 131 [1-2] 79-85 (2004)   DOI
30 S. Sengodan, S.Choi, A. Jun, T. H. Shin, Y.-W.Ju, H. Y. Jeong, J. Shin, J. T. S. Irvine, and G.Kim, "Layered oxygen-deficient double perovskite as an efficient and stable anode for direct hydrocarbon solid oxide fuel cells." Nat. Mater. 14, 205-209. (2014)
31 S. Choi, S. Yoo, J. Kim, S. Park, A. Jun, S. Sengodan, J.Kim, J. Shin, H. Y. Jeong, Y. Choi, G. Kim, and M. Liu, Highly efficient and robust cathode materials for low-temperature solid oxide fuel cells: $PrBa_{0.5}Sr_{0.5}Co_{2-x}Fe_{x}O_{5+{\delta}}$. Sci. Rep. 3, 2426. (2013)   DOI
32 S. Choi, C. J. Kucharczyk, Y. Liang, X. Zhang, I. Takeuchi, H.-I. Ji and S. M. Haile, "Exceptional power density and stability at intermediate temperatures in protonic ceramic fuel cells" Nat. Energy. 3, 202-210 (2018)   DOI
33 B. Lin, Y. Dong, R. Yan, S. Zhang, M. Hu, Y. Zhou and G. Meng, "In situ screen-printed $BaZr_{0.1}Ce_{0.7}Y_{0.2}O_{3-{\delta}}$ electrolyte-based protonic ceramic membrane fuel cells with layered $SmBaCo_2O_{5+x}$ cathode" J. Power Sources 186 [2] 446-449 (2009)   DOI
34 M. Jin, X. Zhang, Y. Qiu and J. Sheng, "Layered $PrBaCo_2O_{5+{\delta}}$ perovskite as a cathode for protonconducting solid oxide fuel cells" J. Alloys Compd. 494 [1-2] 359-361 (2010)   DOI
35 H. Ding and X. Xue, "Proton conducting solid oxide fuel cells with layered $PrBa_{0.5}Sr_{0.5}Co_2O_{5+{\delta}}$ perovskite cathode" Int. J. Hydrogen Energy 35 [6], 2486-2490 (2010)   DOI
36 R. Mukundan, P. K. Davies and W. L. Worrell, "Electrochemical Characterization of Mixed Conducting $Ba(Ce_{0.8-y}PryGd_{0.2})O_{2.9}$ Cathodes" J. Electrochem. Soc. 148 [1] A82-A86 (2001)   DOI
37 A. Magraso, R. Haugsrud, M. Segarra and T. Norby, "Defects and transport in Gd-doped $BaPrO_3$" J. Electroceramics 23 [1] 80-88 (2009)
38 M. Shang, J. Tong and R. O'Hayre, "A promising cathode for intermediate temperature protonic ceramic fuel cells: $BaCo_{0.4}Fe_{0.4}Zr_{0.2}O_{3-{\delta}}$" RSC Adv. 3 15769-15775 (2013)   DOI
39 H. An, H.-W. Lee, B.-K. Kim, J.-W. Son, K. J. Yoon, H. Kim, D. Shin, H.-I. Ji and J.-H. Lee "A $5\;{\times}\;5\;cm^2$ protonic ceramic fuel cell with a power density of $1.3Wcm^{-2}\;at\;600^{\circ}C$" Nature Energy 3, 870-875 (2018)   DOI
40 M. Mogensen, K. V. Jensen, M.J. Jorgensen, and S. Primdahl, "Progress in understanding SOFC electrodes." Solid State Ionics. 150 [1-2] 123-129 (2002)   DOI
41 M. D. Gross, J.M.Vohs, and R.J.Gorte, "Recent progress in SOFC anodes for direct utilization of hydrocarbons." J. Mater.Chem. 17, 3071-3077 (2007)   DOI
42 S. Park, J. M. Vohs, and R.J.Gorte, "Direct oxidation of hydrocarbons in a solid-oxide fuel cell" Nature. 404, 265-267 (2000)   DOI
43 S. Tao, and J. T. S. Irvine, "A redox-stable efficient anode for solid-oxide fuel cells." Nat. Mater. 2, 320-323 (2003)   DOI
44 N. Q. Minh, "Ceramic Fuel Cells." J. Am.Ceram.Soc. 76 [3] 563-588 (1993)   DOI
45 https://www.knrec.or.kr/energy/fuelcell_summary.aspx
46 S. B. Adler, "Factors Governing Oxygen Reduction in Solid Oxide Fuel Cell Cathodes" Chem.Rev. 104 [10] 4791-4844 (2004)   DOI
47 D. M. Bastidas, S.Tao, and J.T.S.Irvine, "A symmetrical solid oxide fuel cell demonstrating redox stable perovskite electrodes" J. Mater. Chem. 16, 1603-1605 (2006)   DOI
48 E.D. Wachsman, and K.T. Lee, "Lowering the Temperature of Solid Oxide Fuel Cells." Science. 334 [6058] 935-939, (2011)   DOI
49 J. H. Shim, "Ceramics breakthrough." Nature Energy. 3, 168-169 (2018)   DOI
50 S. Stotz and C. Wagner. "The solubility of water vapor and hydrogen in solid oxides" (in Ger.) Ber. Bunsenges. Phys. Chem. 70 [8] 781-88 (1966)
51 H. Iwahara, T. Esaka, H. Uchida and N. Maeda, "Proton conduction in sintered oxides and its application to steam electrolysis for hydrogen production" Solid State Ionics. 3-4, 359-363 (1981)   DOI
52 H. Iwahara, "Proton conducting ceramics and their applications" Solid State Ionics. 86-88, 9-15 (1996)   DOI
53 K.D. Kreuer, "Proton Conductivity: Materials and Applications" Chem. Mater. 8 [3] 610-641 (1996)   DOI
54 B.C.H. Steele, "Material science and engineering: The enabling technology for the commercialisation of fuel cell systems" J. Mater.Sci. 36 [5] 1053-1068. (2001)   DOI
55 G. Kim, S. Wang, A. J. Jacobson, L. Reimus, P.Brodersen and C. A. Mims, "Rapid oxygen ion diffusion and surface exchange kinetics in $PrBaCo_2O_{5+x}$ with a perovskite related structure and ordered A cations." J. Mater.Chem. 17 [24] 2500-2505 (2007)   DOI
56 H. Ding, X. Xue, X. Liu and G. Meng, "A novel layered perovskite cathode for proton conducting solid oxide fuel cells" J. Power Sources 195 [3] 775-778 (2010)   DOI
57 C. Duan, J. Tong, M. Shang, S. Nikodemski, M. Sanders, S. Ricote, A. Almansoori and R. O'Hayre, "Readily processed protonic ceramic fuel cells with high performance at low temperatures" Science. 349 [6254] 1321-1326 (2015)   DOI