• 제목/요약/키워드: Fuel cell Blower

검색결과 70건 처리시간 0.024초

250kW급 MCFC 연료전지 시스템용 공기공급장치 개발 (Development of an Air Supply System in 250 kW MCFC Fuel Cell System)

  • 박준영;황순찬;박무룡;김영철;안국영
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.280-283
    • /
    • 2008
  • This study is concerned with development of air supply system in 250kW MCFC fuel cell system. The turbo blower is decided as an air supply system to increase the efficiency of fuel cell system. The turbo blower consists of an impeller, two vaneless diffuser, a vaned diffuser and a volute. The cascade diffuser is used to raise the efficiency of turbo blower. An aerodynamic design was done by applying the repeating design procedure including a meanline design, a 3D geometry generation and fluid dynamic calculation. It is confirmed from meanline and 3D flow analysis results that the operating range is enough and design requirements are successfully achieved. The performance test results were also included in this paper.

  • PDF

연료전지용 터보압축기 회전축의 동특성 해석에 관한 연구 (A Study on the Dynamic Analysis in the Shaft of Turbo-Blower for Fuel Cell)

  • 김홍건;나석찬;김성철;강영우;양균의;이희관;최문창
    • 한국공작기계학회논문집
    • /
    • 제13권1호
    • /
    • pp.81-87
    • /
    • 2004
  • A 3-D FEM (Finite Element Method) analysis of the turbo-blower shaft attached to a fuel cell was performed using Lanczos algorithm. The modal analysis was analyzed in order to investigate natural frequency and maximum displacement for 10 times. It was found that the first mode of natural frequency is 109.1Hz with the maximum displacement of 0.16mm while the tenth mode of natural frequency is 2464Hz with the maximum displacement of 0.25mm. Consequently, the results of modal analysis of the turbo-blower for a fuel cell system show good dynamic responses.

연료전지용 연료승압블로어 내부유동장 평가 (Internal Flow Analysis on the Fuel Cell's Blower)

  • 장춘만;최가람;탁봉열;김찬규
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.87.2-87.2
    • /
    • 2011
  • 1kW급 가정용 연료전지 블로어는 다이어프램방식에 의해 고압 및 일정유량의 가스를 이송시키는 역할을 하고 있다. 본 연구에서는 연료전지 중 연료승압블로어를 대상으로 흡입 및 토출시의 다이어프램 캐비티(Cavity) 내의 공기유동 특성을 수치해석을 적용하여 평가하였다.

  • PDF

5 kW급 건물용 연료전지 시스템 연료승압 블로워 안전 성능 평가에 관한 연구 (A Study on Safety Performance Evaluation of NG Blower for 5 kW Class Stationary Fuel Cell Systems)

  • 백재훈;이은경;이정운;이승국;문종삼;김규형;박한우;김동철;이진희
    • 한국수소및신에너지학회논문집
    • /
    • 제28권6호
    • /
    • pp.675-682
    • /
    • 2017
  • New government, the market for stationary fuel cell systems in domestic is expected to expand in line with the policy for expanding new and renewable energy. In order to promote and expand the domestic market for stationary fuel cell systems, it is required to do research and develop for cost reduction and efficiency improvement technologies through the localization of BOP. In this study, the safety performance including the power consumption, flow rate, noise and air-tightness of the domestic fuel booster blower and the foreign fuel booster blower was evaluated and the performance improvement of the domestic blower was confirmed. As a result of the power consumption measurement and the flow rate according to the back pressure of the A company 2nd prototype and B company, the values were 73 W, 27 LPM, and 55 W, 25 LPM. These results are attributed to the improvement of performance through design changes such as CAM angle and diaphragm material.

건물용 연료전지 시스템용 연료처리장치와 연료승압 블로워 연계 특성에 관한 연구 (A Study on Connection of Fuel Processor and NG blower for Small Commercial Fuel Cell System)

  • 김재동;장세진;김진욱;김봉규;한신호;박달영
    • 한국가스학회지
    • /
    • 제21권5호
    • /
    • pp.36-44
    • /
    • 2017
  • 건물용 연료전지 시스템은 공기와 수소의 전기화학반응을 통하여 전기와 열을 생산하는 신재생에너지 시스템이다. 국내의 건물용 연료전지 시스템은 매년 수백기가 판매될 정도로 진행이 되고 있으며, 건물용 연료전지 시스템내에 많은 부품이 국내제품이 아닌 외국 제품에 의존하고 있다. 건물용 연료전지시스템의 중요부품인 연료처리장치를 한국가스공사에서 개발하여 현재 장기내구성 평가를 진행하고 있으며, 국내외에서 개발된 연료승압 블로워를 평가하고, 한국가스공사의 연료처리장치와 BOP와 연계하여 평가를 진행하였다. 한국가스공사에서 개발된 연료처리장치는 76%이상의 효율과 3,000시간 운영에도 일정한 성능을 유지하는 것을 확인할 수 있었고, 국내에서 개발된 연료승압 블로워는 후단압력 및 온도에 따른 소비전력의 평가시 국외의 연료승압 블로워와 대등한 특성을 나타내었으며, 연료처리장치와 BOP가 연계된 연료처리장치 모듈평가시에도 우수한 성능을 나타내었다.

연료전지용 캐소드 공기블로어의 비정상 내부유동장 연구 (Unsteady Internal Flow Analysis of a Cathode Air Blower Used for Fuel Cell System)

  • 장춘만;이종성
    • 신재생에너지
    • /
    • 제8권3호
    • /
    • pp.6-13
    • /
    • 2012
  • This paper describes unsteady internal flow characteristics of a cathode air blower, used for the 1 kW fuel cell system. The cathode air blower considered in the present study is a diaphragm type blower. To analyze the flow field inside the diaphragm cavity, compressible unsteady numerical simulation is performed. Moving mesh system is applied to the numerical analysis for describing the volume change of the diaphragm cavity in time. Throughout a numerical simulation by modeling the inlet and outlet valves in a diaphragm cavity, unsteady nature of an internal flow is successfully analyzed. Variations of mass flow rate, force and pressure on the lower moving plate of a diaphragm cavity are evaluated in time. The computed mass flow rate at the same pressure and rotating frequency of a motor has a maximum of 5 percent error with the experimental data. It is found that flow pattern at the suction process is more complex compared to that at the discharge process. Unsteady nature of internal flow in the cathode air blower is analyzed in detail.

PEM 연료전지용 터보 블로워의 내구성에 관한 실험적 연구 (An Experimental Study on the Durability Test for PEM Fuel Cell Turbo-blower)

  • 이용복;이희섭;정진택
    • 한국자동차공학회논문집
    • /
    • 제16권5호
    • /
    • pp.37-43
    • /
    • 2008
  • The durability test of turbo-blower for PEM fuel cell is very important process of BOP development. It is a major barrier to the commercialization of these systems for stationary and transportation power applications. Commercial viability depends on improving the durability of the air supply system to increase the reliability and to reduce the lifetime cost. In this study, turbo-blower supported by oil-free bearing is introduced as the air supply system used by 80kW proton exchange membrane fuel systems. The turbo-blower is a turbo machine which operates at high speed, so air foil bearings suit their purpose as bearing elements. The impeller of blower was adopted mixed type of centrifugal and axial. So, it has several advantages for variable operating condition. The turbo-blower test results show maximum parasitic power levels below 1.67kW with the 30,000 rpm rotating speed, the flow rate of air has maximum 163SCFM(@PR1.1). For proper application of FCV, these have to durability test. This paper describes the experiment for confirming endurance and stability of the turbo-blower for 500 hours.

건물 연료전지용 재생블로어 설계변수 특성연구 (Characteristics of Design Parameters on the Regenerative Blower Used for Building Fuel Cell System)

  • 장춘만;이종성
    • 설비공학논문집
    • /
    • 제24권10호
    • /
    • pp.739-744
    • /
    • 2012
  • This paper describes the blower performance used for single-stage high pressure regenerative blower. The blower considered is widely applied to the field of a fuel cell system, a medical equipment and a sewage treatment plant. Flow rate and rotating frequency of a impeller of the blower are considered as design parameters for the proper operation of the blower. Three-dimensional Navier-Stokes equations are introduced to analyze the performance and internal flow of the blower. Relatively good agreement between experimental measurements and numerical simulation is obtained. Throughout a numerical simulation, it is found that small and stable vortical flow generated inside the blade passage is effective to increase pressure and efficiency of the blower. Large local recirculation flow having low velocity in the blade passage obstructs the generation of stable vortical flow, thus increases the pressure loss of the blower. Detailed flow field inside the blower is also analyzed and discussed.

FCEV Turbo Blower 의 동특성 해석 (Dynamic Analysis of FCEV Turbo Blower)

  • 육지용;양현섭;이창하;조경석;박용선;권혁률
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2010년도 추계학술대회 논문집
    • /
    • pp.599-606
    • /
    • 2010
  • This paper presents dynamic analysis of FCEV (Fuel Cell Electric Vehicle) Turbo Blower. To analyze the dynamic characteristics of Turbo Blower, finite element model which consists of solid elements is constructed. Evaluation of stress for safety of rotor sleeve due to centrifugal force, Shrink fit analysis in maximum rotation speed is performed. Rotor dynamic analysis of Turbo blower is conducted using Campbell diagram and FEA (Finite element analysis) results are compared with experimental results to evaluate of validity of finite element model. To evaluate of Structure vibration characteristics, Modal analysis and forced vibration analysis are performed through FEA and experiment.

  • PDF

블로워 구성 변경에 따른 상압형 자동차용 고분자전해질형 연료전지 시스템의 효율 특성 연구 (Study on the Characteristics of Low-pressure Automotive Polymer Electrolyte Membrane Fuel Cell System Efficiency with Blower Configuration)

  • 김일중;이정재;김한상
    • 한국수소및신에너지학회논문집
    • /
    • 제29권2호
    • /
    • pp.181-189
    • /
    • 2018
  • Polymer electrolyte membrane fuel cell (PEMFC) system receives great attention as a promising power device for automotive applications. For the wide commercialization, the efficiency and performance of automotive PEMFC system should be further improved in terms of total system (stack and balance of plant [BOP]). Air supply module, which is a major part of the BOP, greatly affects the efficiency of automotive PEMFC system. In this paper, a systematic study on the low-pressure automotive PEMFC system was made in an attempt to enhance the net system efficiency. This study mainly presents an investigation of the effect of blower configuration (1-blower and 2-blower) on the net system efficiency of automotive PEMFC system. For this purpose, the effect of operating pressure and cathode stoichiometry on the system efficiency was investigated with stack temperature under the fixed net system power condition. Results indicate that 1-blower system is better in system efficiency over 2-blower system under an air stoichiometry of 2. However, 2-blower system is better in system efficiency under an air stoichiometry of 3. The simulation results show that the optimum operating strategy needs to be established for various blower system configurations considering blower performance maps.