• Title/Summary/Keyword: Frobenius number

Search Result 21, Processing Time 0.024 seconds

Efficient Exponentiation in Extensions of Finite Fields without Fast Frobenius Mappings

  • Nogami, Yasuyuki;Kato, Hidehiro;Nekado, Kenta;Morikawa, Yoshitaka
    • ETRI Journal
    • /
    • v.30 no.6
    • /
    • pp.818-825
    • /
    • 2008
  • This paper proposes an exponentiation method with Frobenius mappings. The main target is an exponentiation in an extension field. This idea can be applied for scalar multiplication of a rational point of an elliptic curve defined over an extension field. The proposed method is closely related to so-called interleaving exponentiation. Unlike interleaving exponentiation methods, it can carry out several exponentiations of the same base at once. This happens in some pairing-based applications. The efficiency of using Frobenius mappings for exponentiation in an extension field was well demonstrated by Avanzi and Mihailescu. Their exponentiation method efficiently decreases the number of multiplications by inversely using many Frobenius mappings. Compared to their method, although the number of multiplications needed for the proposed method increases about 20%, the number of Frobenius mappings becomes small. The proposed method is efficient for cases in which Frobenius mapping cannot be carried out quickly.

  • PDF

A REMARK ON THE NUMBER OF FROBENIUS CLASSES GENERATING THE GALOIS GROUP OF THE MAXIMAL UNRAMIFIED EXTENSION

  • Jin, Seokho;Kim, Kwang-Seob
    • Honam Mathematical Journal
    • /
    • v.42 no.2
    • /
    • pp.213-218
    • /
    • 2020
  • Assume that K is a number field and Kur is the maximal unramified extension of it. When Gal(Kur/K) is an infinite group. It is known that Gal(Kur/K) is generated by finitely many Frobenius classes of Gal(Kur/K) by Y. Ihara. In this paper, we will give the explicit number of Frobenius classes which generate whole group Gal(Kur/K).

THE FROBENIUS NUMBERS OF SOME NUMERICAL SEMIGROUPS

  • Lee, Hyung Nae;Song, Byung Chul
    • Korean Journal of Mathematics
    • /
    • v.10 no.2
    • /
    • pp.191-194
    • /
    • 2002
  • Let $S_i$ be the numerical semigroup generated by the set $\{a,a+d,{\cdots},a+(i-1)d,a+(i+1)d, {\cdots},a+rd\}$. In this paper, we will formulate the largest nonmember, the Frobenius number, of each set $S_i$.

  • PDF

THE FROBENIUS PROBLEM FOR NUMERICAL SEMIGROUPS GENERATED BY THE THABIT NUMBERS OF THE FIRST, SECOND KIND BASE b AND THE CUNNINGHAM NUMBERS

  • Song, Kyunghwan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.3
    • /
    • pp.623-647
    • /
    • 2020
  • The greatest integer that does not belong to a numerical semigroup S is called the Frobenius number of S. The Frobenius problem, which is also called the coin problem or the money changing problem, is a mathematical problem of finding the Frobenius number. In this paper, we introduce the Frobenius problem for two kinds of numerical semigroups generated by the Thabit numbers of the first kind, and the second kind base b, and by the Cunningham numbers. We provide detailed proofs for the Thabit numbers of the second kind base b and omit the proofs for the Thabit numbers of the first kind base b and Cunningham numbers.

A Fast Multiplication Method for Elliptic Curves defined on small finite fields (작은 유한체 위에 정의된 타원곡선의 고속연산 방법)

  • 박영호;정수환
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.12 no.5
    • /
    • pp.45-51
    • /
    • 2002
  • As Koblitz curve, the Frobenius endomorphism is know to be useful in efficient implementation of multiplication on non-supersingular elliptic cures defined on small finite fields of characteristic two. In this paper a method using the extended Frobenius endomorphism to speed up scalar multiplication is introduced. It will be shown that the proposed method is more efficient than Muller's block method in [5] because the number of point addition for precomputation is small but on the other hand the expansion length is almost same.

Speeding up Scalar Multiplication in Genus 2 Hyperelliptic Curves with Efficient Endomorphisms

  • Park, Tae-Jun;Lee, Mun-Kyu;Park, Kun-Soo;Chung, Kyo-Il
    • ETRI Journal
    • /
    • v.27 no.5
    • /
    • pp.617-627
    • /
    • 2005
  • This paper proposes an efficient scalar multiplication algorithm for hyperelliptic curves, which is based on the idea that efficient endomorphisms can be used to speed up scalar multiplication. We first present a new Frobenius expansion method for special hyperelliptic curves that have Gallant-Lambert-Vanstone (GLV) endomorphisms. To compute kD for an integer k and a divisor D, we expand the integer k by the Frobenius endomorphism and the GLV endomorphism. We also present improved scalar multiplication algorithms that use the new expansion method. By our new expansion method, the number of divisor doublings in a scalar multiplication is reduced to a quarter, while the number of divisor additions is almost the same. Our experiments show that the overall throughputs of scalar multiplications are increased by 15.6 to 28.3 % over the previous algorithms when the algorithms are implemented over finite fields of odd characteristics.

  • PDF

User Selection Scheme Based on the Projection Matrix (투영 행렬을 이용한 사용자 선택 기법)

  • Kim, Gibum;Kim, Jinwoo;Park, Hyuncheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.7
    • /
    • pp.1257-1265
    • /
    • 2015
  • In this paper, we describe a greedy user selection scheme for multiuser multiple-input multiple-output (MIMO) systems. We propose a new metric which has significantly improved performance compared to the Frobenius norm metric. The approximation of projection matrix is applied to increase the accuracy of Frobenius norm of effective channel matrix. We analyze the computational complexity of two metrics by using flop counts, and also verify the achievable sum rate through numerical simulation. Our simulation result shows that the proposed metric can achieve the improved sum rate as the number of user antenna increases.

A transfer matrix method for in-plane bending vibrations of tapered beams with axial force and multiple edge cracks

  • Lee, Jung Woo;Lee, Jung Youn
    • Structural Engineering and Mechanics
    • /
    • v.66 no.1
    • /
    • pp.125-138
    • /
    • 2018
  • This paper proposes a transfer matrix method for the bending vibration of two types of tapered beams subjected to axial force, and it is applied to analyze tapered beams with an edge or multiple edge open cracks. One beam type is assumed to be reduced linearly in the cross-section height along the beam length. The other type is a tapered beam in which the cross-section height and width with the same taper ratio is linearly reduced simultaneously. Each crack is modeled as two sub-elements connected by a rotational spring, and the method can evaluate the effect of cracking on the desired number of eigenfrequencies using a minimum number of subdivisions. Among the power series available for the solutions, the roots of the differential equation are computed using the Frobenius method. The computed results confirm the accuracy of the method and are compared with previously reported results. The effectiveness of the proposed methods is demonstrated by examining specific examples, and the effects of cracking and axial loading are carefully examined by a comparison of the single and double tapered beam results.

On the Subsemigroups of a Finite Cyclic Semigroup

  • Dobbs, David Earl;Latham, Brett Kathleen
    • Kyungpook Mathematical Journal
    • /
    • v.54 no.4
    • /
    • pp.607-617
    • /
    • 2014
  • Let S = C(r,m), the finite cyclic semigroup with index r and period m. Each subsemigroup of S is cyclic if and only if either r = 1; r = 2; or r = 3 with m odd. For $r{\neq}1$, the maximum value of the minimum number of elements in a (minimal) generating set of a subsemigroup of S is 1 if r = 3 and m is odd; 2 if r = 3 and m is even; (r-1)/2 if r is odd and unequal to 3; and r/2 if r is even. The number of cyclic subsemigroups of S is $r-1+{\tau}(m)$. Formulas are also given for the number of 2-generated subsemigroups of S and the total number of subsemigroups of S. The minimal generating sets of subsemigroups of S are characterized, and the problem of counting them is analyzed.