
818 Yasuyuki Nogami et al. ETRI Journal, Volume 30, Number 6, December 2008

This paper proposes an exponentiation method with
Frobenius mappings. The main target is an exponentiation
in an extension field. This idea can be applied for scalar
multiplication of a rational point of an elliptic curve
defined over an extension field. The proposed method is
closely related to so-called interleaving exponentiation.
Unlike interleaving exponentiation methods, it can carry
out several exponentiations of the same base at once. This
happens in some pairing-based applications. The
efficiency of using Frobenius mappings for exponentiation
in an extension field was well demonstrated by Avanzi and
Mihailescu. Their exponentiation method efficiently
decreases the number of multiplications by inversely using
many Frobenius mappings. Compared to their method,
although the number of multiplications needed for the
proposed method increases about 20%, the number of
Frobenius mappings becomes small. The proposed
method is efficient for cases in which Frobenius mapping
cannot be carried out quickly.

Keywords: Exponentiation, Frobenius mapping,
extension field, prime field, modular polynomial, window
method.

Manuscript received Mar. 21, 2008; revised Sept. 10, 2008; accepted Oct. 21, 2008.
Yasuyuki Nogami (email: nogami@trans.cne.okayama-u.ac.jp), Hidehiro Kato (email:

kato@trans.cne.okayama-u.ac.jp), Kenta Nekado (email: nekado@trans.cne.okayama-u.ac.jp),
and Yoshitaka Morikawa (email: morikawa@cne.okayama-u.ac.jp) are with the Graduate
School of Natural Science and Technology, Okayama University, Okayama, Japan.

I. Introduction

Recently, pairing-based cryptographic applications such as ID-
based cryptography [1], group signature authentication [2], and
broadcast encryption [3] have received much attention. Pairings
such as the Weil, Tate, Eta, and Ate pairings are bilinear
mappings from two subgroups in a certain elliptic curve to a
subgroup in a certain extension field [4]-[6]. A pairing calculation
needs an exponentiation in an extension field. The computation
time of the exponentiation is about half of the total computation
time of a pairing calculation. In addition, those pairing-based
cryptographic applications need many exponentiations in an
extension field. Such exponentiations in an extension field are
the subject of this paper. This paper proposes a new
exponentiation method with Frobenius mappings.

The most widely used binary method calculates an
exponentiation an by using the binary representation of
exponent n. It iterates squaring and multiplying. The binary
method needs 2log n⎢ ⎥⎣ ⎦ squares and 2log / 2n⎢ ⎥⎣ ⎦ multiplications
on average. The window method [7] calculates exponentiations
more efficiently; however, it still needs 2log n w−⎢ ⎥⎣ ⎦ squares,
where w is the window size. Moreover, it is not very efficient
when the base a changes often. The proposed exponentiation
method is closely related to the so-called interleaving
exponentiation method [8]. In contrast to interleaving
exponentiation methods, the proposed method can compute
several exponentiations of the same base at once. For example,
when A∈Fpm and x, y, and z are large positive integers, our
exponentiation method can compute Ax, Ay, and Az at once.
Note that the proposed method is efficiently applied when the
extension degree m is equal to 1. The use of Frobenius
mappings for efficient exponentiation in an extension field was

Efficient Exponentiation in Extensions of
Finite Fields without Fast Frobenius Mappings

 Yasuyuki Nogami, Hidehiro Kato, Kenta Nekado, and Yoshitaka Morikawa

ETRI Journal, Volume 30, Number 6, December 2008 Yasuyuki Nogami et al. 819

well demonstrated by Avanzi and Mihailescu [9]. When the
exponent n is sufficiently larger than the characteristic p and the
Frobenius mapping is carried out fast in the concerned extension
field, using Frobenius mappings accelerates exponentiations
because the number of squares required for an exponentiation
decreases to 2log (1)p −⎢ ⎥⎣ ⎦ . On the other hand, 2log / 2n⎢ ⎥⎣ ⎦
multiplications on average are still needed. To decrease the
number of multiplications, the window method can be applied in
addition to Frobenius mappings. Based on this idea, Avanzi and
Mihailescu [9] proposed a fast exponentiation method called the
Frobenius abusing exponentiation method. This method
decreases the number of multiplications; however, the number of
Frobenius mappings inversely increases. Thus, it still has two
problems. First, it is not very efficient when the base often
changes, and secondly, it needs fast Frobenius mapping in the
concerned extension field.

It is well-known that an optimal extension field (OEF)
whose modular polynomial is an irreducible binomial has a fast
Frobenius mapping [10]. In order to construct the degree-m
extension field Fpm over Fp as an OEF, each prime factor of m
needs to divide p–1. This sometimes becomes a critical
condition. For example, consider Freeman’s curve [11] whose
embedding degree is 10. The characteristic p of the underlying
finite field must satisfy

4 3 225 25 25 10 3p χ χ χ χ= + + + + (1)

for a certain integer χ . From this condition, it is found that the
field of definition of the curve Fp10 cannot be prepared as an
OEF. In detail, it is because p–1 and p+1 are not divisible by 5.
In this case, one would adopt an irreducible trinomial as its
modular polynomial, so a Frobenius mapping in Fp10 will need
almost the same calculation cost as a multiplication in Fp10. This
is an example of a curve whose field of definition does not
have fast Frobenius mapping.

To overcome these problems, this paper proposes an
exponentiation method for extension fields that efficiently uses
Frobenius mappings but is not based on the window method.
Compared to Avanzi’s method [9], the number of multiplications
needed for the proposed method increases by about 20%;
however, the number of Frobenius mappings is reduced.
Evaluating the calculation costs, it is shown that the proposed
exponentiation method is sufficiently practical for cases in which
the base is often changed and a Frobenius mapping cannot be
carried out quickly in the concerned extension field. In this paper,
we deal with the example of an extension field Fpm over prime
field Fp; however, the proposed method can easily be extended
for an extension field Fqm over some extension field Fq, q = pi.
The proposed method is also applied for a scalar multiplication

of a rational point of an elliptic curve defined over an extension
field. The basic idea is efficiently applied in solving the plurality
of general exponentiations of the same base at once. Moreover,
the proposed method is efficient for fixed base scalar
multiplication of elliptic curve cryptography.

Throughout this paper, p and m denote the characteristic and
extension degree, respectively, where p is a prime number, and
F *

p m denotes the multiplicative group in Fpm. Unless otherwise
noted, lower and upper case letters show elements in the prime
field and extension field, respectively. Greek characters denote
zeroes of modular polynomials.

II. Preparation

In this section, let us briefly go over bases of extension fields,
Frobenius mappings, the binary method, the window method,
and previous work.

1. Bases of Extension Fields

To construct arithmetic operations in Fpm, we usually need an
irreducible polynomial f(x) of degree m over Fp. Let ω be a
zero of f(x) in Fp

m, then the following set forms a basis of Fpm
over Fp:

2 1{1, , , , },mω ω ω − (2)

which is called a polynomial basis. An arbitrary element A in
Fpm is written as

1
0 1 1 .m

mA a a aω ω −
−= + + + (3)

Its vector representation A is vA = (a0, a1,…, am-1). A
multiplication and an inversion in Fpm are carried out by using
f(ω) = 0; thus, f(x) is called the modular polynomial of Fpm.
When the following conjugates of ω with respect to Fp are
linearly independent:

2 1

{ , , , , },
mp p pω ω ω ω

−

 (4)

this is called a normal basis, which allows us to use an efficient
Frobenius mapping.

Consider the normal basis (4) in Fp
m and an arbitrary element

A in Fpm as follows:
1

0 1 1

0 1 1(, , ,).

mp p
m

m

A a a a
a a a
ω ω ω

−

−

−

= + + +
=

 (5)

The Frobenius mapping is defined by

2 1

0 1 2 1

1 0 2

:

(, , ,).

m

p

p p p p
m m

m m

A A

A a a a a
a a a
ω ω ω ω

−

− −

− −

→

= + + + +

=
 (6)

820 Yasuyuki Nogami et al. ETRI Journal, Volume 30, Number 6, December 2008

Thus, using a normal basis, we can carry out a Frobenius
mapping without any arithmetic operations.

An optimal extension field (OEF) [10] whose modular
polynomial is an irreducible binomial has a fast Frobenius
mapping. Consider the OEF Fp

m with the following irreducible
binomial over Fp as the modular polynomial:

() , .m
pf x x s s F= − ∈ (7)

Note that the OEF uses a polynomial basis given by
2 1{1, , , , },mω ω ω − (8)

where ω is a zero of f(x). When m divides p–1, for instance, the
Frobenius map of A∈Fpm is given as

2 (1)
0 1 2 1

2 2 1 1
0 1 2 1 ,

p p p m p
m

m m
m

A a a a a

a a l a l a l

ω ω ω

ω ω ω

−
−

− −
−

= + + + +

= + + + +

(9)

where l=s(p –1) / m because ω p is given by

1 (1) / (1) /() .p p m p m p msω ω ω ω ω ω− − −= ⋅ = = ⋅ (10)

Thus, previously computing l i for i = 1, 2,…, m–1, the
Frobenius mapping in the OEF carries out only m–1
Fp-multiplications. On the other hand, when the modular
polynomial is a degree m irreducible trinomial over Fp, the
Frobenius mapping in Fpm will need to multiply an (m×m) matrix
over Fp. In appendix A, some Frobenius matrices are shown. In
what follows, we use the following notation: ϕi (A) = A p i .

2. Binary Method

The well-known binary method quickly calculates an
exponentiation with a large integer exponent. Let n be a positive
integer. The binary method calculates An as follows.

Algorithm 1. (right-to-left binary method)

Input: A and exponent n
Output: B = An

Main procedure:
 1. X ← 1, B ← A.
 2. If n = 0, output X.
 3. Otherwise,
 4. if (n & 1) = 1, X X B← ⋅ .
 5. B B B← ⋅ .
 6. n ← n >> 1, then go to step 2.
 7. Output B.

 (end of algorithm)
In what follows, & and >> in algorithms denote the bit-and and
bit-shift operators, respectively. The binary method needs only
⎣ ⎦n2log squares and ⎣ ⎦ 2/log2 n multiplications on average.

3. Window Method

Here, we give an example of how to use the window method
(with window size 3) to calculate An. First, precompute the
values

A2, A3, A4,…, A7, (11)

whose exponents correspond to the following binary
representations, respectively:

2=(010)2, 3=(011)2, 4=(100)2,…, 7=(111)2. (12)

Then, we calculate An by combining and squaring these
previously calculated components. For example, when
exponent n is 318, An is calculated as

A318 = A(100111110)2 ={(A(100)2)23
 (A(111)2)}23

 A(110)2. (13)

The window size w corresponds to the bit length of each
segment. The window method is efficient for repeatedly
calculating exponentiations with the same base. Note that the
window method still needs ⎣ ⎦ wn −2log squares as shown in
(13). When the base is often changed, we cannot efficiently
precompute the components as in (11). We must precompute
new values for every exponentiation base.

4. Previous Works

Let us briefly go over the Frobenius abusing exponentiation
method proposed by Avanzi and others [9]. Note that, as
introduced in [9], this method requires very fast Frobenius
mappings. Write the exponent n as

0
, 0 1, log ,

s
i

i i p
i

n n p n p s n
=

⎢ ⎥= ≤ ≤ − = ⎣ ⎦∑ (14)

and for some

2log , / ,w u p K u w<< = =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ (15a)

1

0

2 .
K

jw
i ij

j

n n
−

=

= ∑ (15b)

Then, calculate An in Fpm as

1
2

0 0 0

21

0 0

() ()

() .

jw
iji

jw

ij

s s K
nnn

i i
i i j

K s
n

i
j i

A A A

A

ϕ ϕ

ϕ

−

= = =

−

= =

= =

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

∏ ∏∏

∏ ∏
 (16)

This method makes efficient use of the window method to
calculate Anij. Compared to just applying the window method in
addition to Frobenius mappings, (16) decreases the number of
multiplications but increases the number of Frobenius mappings. This
algorithm needs u+1 squarings, (s+1)K+2w–2 multiplications, and

ETRI Journal, Volume 30, Number 6, December 2008 Yasuyuki Nogami et al. 821

sK Frobenius mappings. Avanzi and others [9] introduced several
efficient exponentiation methods such as baby-window giant-
window exponentiation. The Frobenius-abusing exponentiation
previously described is the most efficient of these methods.

III. Exponentiation in an Extension Field

In what follows, let us consider an exponentiation An, A∈Fpm,
and let m be larger than or equal to 2.

1. Main Idea

Consider the p-adic representation of the exponent n as (14).
Then, using the Frobenius mapping ϕ, the exponentiation An is
calculated by

0

().i

s
nn

i
i

A Aϕ
=

= ∏ (17)

The component Ani is denoted by A[i] in algorithm 2. Then,
exponentiation An is calculated by the binary method with
Frobenius mappings as follows. Equation (17) leads to the well-
known p-adic expansion method, which is given here.

Algorithm 2

Input: An element A∈Fpm and an exponent n
Output: C = An
Main procedure:
 1. B ← A, s ← log p n⎢ ⎥⎣ ⎦ , t ← 2log (1)p −⎢ ⎥⎣ ⎦ .
 2. For 0 ≤ i ≤ s, A[i] = 1.
 3. If n = 0, output 1.
 4. Otherwise,
 5. Calculate the p-adic representation of n as (14),
 6. for 0 ≤ j < t,
 7. for 0 ≤ i ≤ s,
 8. if (ni & 1) = 1, A[i] ← A[i]·B.
 9. ni ← ni >> 1.
10. B ← B·B.
11. C = A[s].
12. for s − 1 ≥ j ≥ 0,
13. C ← ϕ1(C), C ← C·A[j].
14. Output C.

 (end of algorithm)
As described section II.4, Avanzi’s method extended algorithm 2
by efficiently using the window method.

This algorithm needs t squares and on average st/2
multiplications in Fpm. After that, (17) needs (s–1) Frobenius
mappings and (s–1) multiplications.

We improve algorithm 2. In what follows, using a concrete
example and Fig. 1, the main idea is explained. For instance, let
s= log p n⎢ ⎥⎣ ⎦ and t= 2log (1)p −⎢ ⎥⎣ ⎦ be 5 and 4, respectively.

Suppose the binary representations of n0 , n1 ,…, n5 are

n1 = (1001)2, n0 = (1110)2, (18a)

n3 = (1101)2, n2 = (1110)2, (18b)

n5 = (1111)2, n4 = (0101)2. (18c)

Let us separate exponent n into three parts as follows (see Fig.
1):

n = (n5 p +n4) p4 + (n3 p +n2) p2 + (n1 p +n0). (19)

For this p-adic expansion, the following procedure is our
proposal. Consider two sets G1 ={An5, An3, An1} and G2 = {An4,
An2, An0}. They are given as

 01 8 1 8 4 2, ,nnA A A A A A A= = (20a)
3 28 4 1 8 4 2, ,n nA A A A A A A A= = (20b)
5 48 4 2 1 4 1, ,n nA A A A A A A A= = (20c)

As shown in (18) and (20), component A2 is needed for An5 in
G1 and An0, An2 in G2. Component A4 is needed for An3, An5 in G1
and An0, An2, An4 in G2 (see Fig. 1), for example. Note that
Ap =ϕ1(A). Then, calculate C001, C010,…, C111 as (see Fig. 1)

C100 =ϕ1(A2)A1, C010 = 1, C001 =1, (21a)

C011 = A8 A2, C101 = 1, (21b)

C110 =ϕ1(A4), C111 =ϕ1(A8 A1)A4. (21c)

Then, An is calculated as

R0 = C100 C101 C110 C111, (22a)

R1 = C010 C011 C110 C111, (22b)

R2 = C001 C011 C101 C111, (22c)

An = ϕ4(R2) ϕ2(R1) R0. (22d)

Equations (17) and (20) need 3 squares and 16
multiplications without using the sliding window method;
however, (21) and (22) need 3 squares and only 14
multiplications. Thus, the p-adic representation and Frobenius
mappings shown in (17) help to decrease the number of
squares, and calculation based on (21) helps to decrease the
number of multiplications. Figure 1 shows the calculations of
(18)-(22). From another viewpoint, (22) just calculates three
exponentiations of the same base at once.

To decrease the number of multiplications, Avanzi’s method
additionally applies the window method to calculate Ani.
However, this increases the number of Frobenius mappings
required; therefore, it requires fast Frobenius mapping. In the
proposed method we take a different approach. The number of
multiplications increases slightly, but the number of Frobenius
mappings is much smaller than in Avanzi’s method.

822 Yasuyuki Nogami et al. ETRI Journal, Volume 30, Number 6, December 2008

Fig. 1. Image of the calculating (18) to (22).

n = (n5 p + n4)p4 + (n3 p + n2)p2 + (n1 p + n0)

A8 A1() A8 A4 A2

A8 A1() A8 A4 A2

A8 A4 A2 A1() A4 A1

A8

A8

A8

C111 C110 C100 C111 C011 C111 C011 C100

A4

A4 A2

A1

A1

A1

)

)

)

A8

A8

A8

A4

A4

A4

A2

A2

A2 A1

R0=ϕ1

R1=ϕ1

R2=ϕ1

ϕ1

ϕ1

ϕ1

3 rows

2 cloumns

··· Eqs.(18), (19)

··· Eqs.(20)

··· Eqs.(21), (22)

Accordingly, the proposed method is more efficient when the
target extension field does not have fast Frobenius mapping.

2. Proposed Algorithm

As shown in Fig. 1, let the numbers of rows and columns be
r and c, respectively. Write the exponent n in the form

1 1

0 0
.

r c
ci j

ij
i j

n n p
− −

+

= =

= ∑∑ (23)

The number of columns c is automatically determined by the bit-
size of n and the number of rows r. The proposed method
calculates An as

1

0
| 2 (& 2) , 0 ,

r
i x

jl ij
i

S x n l x t
−

=

⎧ ⎫
= = ≤ <⎨ ⎬

⎩ ⎭
∑ (24a)

where 0 j c≤ < and 1 2 ,rl≤ <

{ | (2 &) 2 , 1 2 1},i i r
iT y y y= = ≤ < − (24b)

where 0 ,i r≤ <

1
2

0

1 when 0,

otherwise,
k

jl

jl

c
l

j
j k S

S

C
Aϕ

−

= ∈

=⎧
⎪

⎛ ⎞= ⎨ ⎜ ⎟⎪ ⎜ ⎟
⎝ ⎠⎩

∏ ∏
 (24c)

where 1 2 ,rl≤ <

()
1

0

, 0 .ij

i

c
n

i j u
j u T

R A C i rϕ
−

= ∈

= = ≤ <∏ ∏ (24d)

()
1

0

.
r

n
ci i

i

A Rϕ
−

=

= ∏ (24e)

It is found that | Sjl |≤ t and | Ti | = 2r–1. Equation (24a) gives the
set of binary representations related to column bits such as the
subscript 100 of C100 shown in Fig. 1. Equation (24b) gives the set
of integers from 1 to 2r–1 whose i-th bit is equal to 1. Equation
(24c) shows the temporary data Cl that is calculated as the product
of A2k, k∈Sjl , 0≤ j< c-1 by appropriately using their Frobenius
mappings. When Sjl is empty, that is denoted by 0. Set Cl=1 for the
following calculations. Equation (24d) calculates Ri for the i-th row
by multiplying Cu such that u belongs to Ti. Finally, (24e)
calculates the exponentiation An by using previously calculated Ri,
their Frobenius mappings, and (r –1) multiplications in Fpm.

Algorithm 3 shows the proposed exponentiation. First, the lines
1 to 4 initialize the computational buffers. If the exponent n = 0, it
outputs 1. Otherwise, it calculates the p-adic representation of n as
(23). Then, it calculates the Cl, 1≤ l < 2r as (24c) in lines 8 to 17. In
detail, lines 10 to 13 calculate the Sjl, 0≤ j< c, 1≤ l<2r as (24a).
When Sjl ≠ 0, by using the k’s in Sjl, lines 10 to 14 calculate the
product

k

jl
ASk

2∏ ∈ shown in (24c). Their Frobenius mappings
construct the Cl in lines 15 to 17. Then, lines 18 to 20 calculate the
Ri, 0≤ i<r for u∈Ti as (24d). Finally, lines 21 to 23 construct the
result An as (24e).

In the proposed method, the number of temporary variables Cl
and Ri is (2r − 1) + r as shown in (24). The preparation of Cl, 1≤l<2r
needs at most c · t multiplications, where t =⎣ ⎦)1(log2 −p . Using
them, An is calculated with less than r(2r−1 − 1) + (r − 1)
multiplications as shown in (24d) and (24e). In addition, the
proposed algorithm needs (c − 1)(2r − 1) + (r − 1) Frobenius
mappings.

IV. Cost Evaluation

In evaluating the cost of the calculation, a subtraction in Fp is
counted as an addition in Fp. As introduced in the preceding

ETRI Journal, Volume 30, Number 6, December 2008 Yasuyuki Nogami et al. 823

Table 1. Comparison of the calculation cost for an exponentiation in Fpm.

Degree m 3 4 5 6 7

Proposal
Eqs.(24)

r = 3, c = 1
(159, 150, 2)

r = 4, c= 1
(159, 180, 3)

r = 5, c = 1
(159, 234, 4)

r = 3, c = 2
(159, 290, 9)

r = 4, c = 2
(159, 320, 18)

Avanzi
Eq.(16)

w = 5
(160, 125, 61)

w = 5
(160, 156, 92)

w = 5
(160, 187, 123)

w = 5
(160, 218, 154)

w = 6
(156, 249, 159)

Degree m 8 9 10 11 12

Proposal
Eqs.(24)

r = 4, c = 2
(159, 330, 18)

r = 5, c = 2
(159, 383, 35)

r = 5, c = 2
(159, 388, 35)

r = 4, c = 3
(159, 470, 33)

r = 4, c = 3
(159, 480, 33)

Avanzi
Eq.(16)

w = 6
(156, 275, 185)

w = 6
(156, 302, 212)

w = 6
(156, 328, 238)

w = 6
(156, 354, 264)

w = 6
(156, 381, 291)

 Remark : (#S, #M, #F) means that #S squares, #M multiplications, and #F Frobenius mappings in Fpm are respectively needed on average.

sections, one of targets of the proposed exponentiation method is
the case in which a Frobenius mapping cannot be carried out fast
in the concerned extension field.

Algorithm 3. (proposed algorithm)

Input: An element A∈Fpm and an exponent n
Output: D = An
Main procedure:
1. B[0] ← A, t ← 2log (1)p −⎢ ⎥⎣ ⎦ .

 2. For 1 ≤ i < t, B[i] ← B[i−1] · B[i−1].
 3. For 0 < i ≤ 2r, C[i] =1.
 4. For 0 ≤ i < r, R[i] =1.
 5. If n = 0, output 1.
 6. Otherwise,
 7. calculate the p-adic representation of n as (23),
 8. for c > j ≥ 0,
 9. for 0 ≤ k < t,
 10. l = 0,
 11. for 0 ≤ i < r,
 12. if (nij & 1) = 1, l ← l+2i.
 13. nij ← nij >> 1.
 14. if l ≠ 0, C[l] ← C[l]·B[k].
 15. if j ≠ 0,
 16. for 1 ≤ i < 2r,
 17. C[i] ← ϕ1(C[i]).
 18. for 0 ≤ i < r,
 19. for 1 ≤ u < 2r,
 20. if (2i & u) ≠ 0, R[i] ← R[i]·C[u].
 21. D ← R[r−1].
 22. for r − 2 ≥ i ≥ 0,
 23. D ← ϕc(D), D ← D·R[i].
 24. output D

 (end of algorithm)

In this section, we simulate exponentiation over an extension
field with a random160-bit characteristic p and extension degree

Table 2. Comparison of the proposed method baby-window giant-
window method [9] in the case of 32-bit characteristic.

Degree m 4 6 8

Proposed method
r = 4, c = 1
(31, 58, 3)

r = 3, c = 2
(31, 65, 9)

r = 4, c = 2
(31, 88, 18)

Baby-window giant-
window method [9]

w = 1
(31, 63, 3)

w = 2
(31, 87, 5)

w = 2
(31, 111, 7)

 Remark : (#S, #M, #F) means that #S squares, #M multiplications, and #F Frobenius
mappings in Fpm are respectively needed on average.

m = {3, 4, 5, 6, 7, 8, 9, 10, 11, 12}. Algorithm 3 and Avanzi’s
method were compared in Fpm. Inputting 10,000 random
elements in Fpm as the bases and (m log2 p)-bit random integers
as an exponent, the calculation costs for the proposed method
and Avanzi’s method were computed. Table 1 shows a
comparison of the average calculation cost for an exponentiation
in Fpm using the proposed method and Avanzi’s method [9]. Row
size r and column size c as in (24) in the proposed method and
the window size w of (15) of Avanzi’s method were set to the
experimentally optimal values corresponding to each pair of p
and m.

Table 1 shows the numbers of Fp-squarings, Fp-multiplications,
and Frobenius mappings. For example, when m = 3, the proposed
method with r = 3 and c = 1 needs 159 Fp-squarings, 150 Fp-
multiplications, and 2 Frobenius mappings. Compared to Avanzi’s
method, the proposed exponentiation method needs more Fp-
multiplications but fewer Frobenius mappings. As introduced in
section II.1, in some cases, Frobenius mapping becomes
complicated. Thus, in such cases, the proposed method will be
more efficient than Avanzi’s method [9].

Avanzi and others [9] also introduced the baby-window giant-
window exponentiation method in which p is a 32-bit prime. Table
2 shows a comparison of the proposed method and the baby-
window giant-window method [9]. In this case, the proposed
exponentiation method is also more efficient.

824 Yasuyuki Nogami et al. ETRI Journal, Volume 30, Number 6, December 2008

V. Conclusion

This paper has proposed an exponentiation method in an
extension field that efficiently uses Frobenius mappings.
Compared to Avanzi’s method [9], about 20% more
multiplications are needed for the proposed method; however, the
number of Frobenius mappings is low enough. Evaluating the
calculation costs, it was shown that the proposed exponentiation
method is practical for cases in which the base of exponentiation is
often changed and a Frobenius mapping cannot be carried out fast
in the concerned extension field. As a future work, the number of
Fp-multiplications for the proposed method should be further
decreased.

Appendix A. Frobenius Matrices

For example, consider the following parameters:

,10=m (A1a)

4212134911p = (32-bit), (A1b)

irreducible binomial ,2: 10 +x (A1c)

irreducible trinomial .13: 10 ++ xx (A1d)

Equation (A2) shows Frobenius matrix Mn for a normal basis.
This means that Frobenius mapping is simply carried out by

cyclic-shift operation. Thus, using an extension field inversely
becomes complicated. Equation (A3) shows Frobenius matrix
Mb for a polynomial basis given by using irreducible binomial
(A1c) as the modular polynomial. The main diagonal
coefficients of Mb denote li of (9) introduced in section II.1.
Thus, previously computing Mb, Frobenius mapping is carried
out only by (m−1) Fp-multiplications. Equation (A4) shows
Frobenius matrix Mt for a polynomial basis given by using
irreducible trinomial (A1d) as the modular polynomial. The
first row of Mt is always (1, 0,···, 0) because the first entry of
the polynomial basis is 1; however, other rows depend on the
modular trinomial. Thus, in this case, Frobenius mapping
requires about m2 Fp-multiplications. In this case, the proposed
exponentiation method works efficiently.

In the above introduction, polynomial bases are considered
for irreducible binomials and trinomials because such special
irreducible polynomials are usually adopted to efficiently carry
out multiplication in an extension field. In detail, they are
efficient for polynomial modulo operation since the number of
non-zero coefficients is small.

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

0000000001
1000000000
0100000000
0010000000
0001000000
0000100000
0000010000
0000001000
0000000100
0000000010

nM (A2)

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

3763510599000000000
0212277664300000000
0034209041160000000
000849503160000000
0000421213491000000
000004486243120000
0000002089358268000
000000079123079500
0000000033626317510
0000000001

bM (A3)

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

2874939190922128729 11575638233927183875673421108 13393658383879112940568286949 32396097352166231779
4058736513160067380316962820371975073542707098076 2569489181244468215121988403312620212155704368424
2409858198763867726 785686163 3438409067265681042826391380064092446731178323180 14976311971326445396
230428767024178200032990697270182463898939043170113309231865374008101224151448072838260129 2073858903
157116209 13430043553761918956331017308 16147321312331927710307236222 167817309526634842933932326008

243411975423986191 12014272433524266107212922801 27623467763389663137135083084231842909763875561743
445640071351836013766029264 3507562462140088973916975559782613575938628081742 2336381105822289555

33002249793803521501801547702 1948759334712516681 1805854166351704874616469668991234937071 2548988990
27599336891735563347174159862832619311574815149773683581484323064958182327462711249797542062726829

0000000001

tM (A4)

ETRI Journal, Volume 30, Number 6, December 2008 Yasuyuki Nogami et al. 825

References

[1] D. Boneh, B. Lynn, and H. Shacham, “Short Signatures from the Weil
Pairing,” Proc. of Asiacrypt, LNCS 2248, 2001, pp. 514-532.

[2] T. Nakanishi and N. Funabiki, “Verifier-Local Revocation Group
Signature Schemes with Backward Unlinkability from Bilinear
Maps,” Proc. of Asiacrypt, LNCS 3788, 2005, pp. 443-454.

[3] D. Boneh, C. Gentry, and B. Waters, “Collusion Resistant Broadcast
Encryption with Short Ciphertexts and Private Keys,” Proc. of
CRYPTO, LNCS 3621, 2005, pp. 258-275.

[4] J. Silverman, The Arithmetic of Elliptic Curve, Springer-Verlag, 1986.
[5] H. Cohen and G. Frey, Handbook of Elliptic and Hyperelliptic Curve

Cryptography, Discrete Mathematics and Its Applications, Chapman
& Hall CRC, 2005, pp. 280-285, p. 458.

[6] F. Hess, N. Smart, and F. Vercauteren, “The Eta Pairing Revisited,”
IEEE Transactions on Information Theory, vol. 52, no. 10, 2006, pp.
4595-4602.

[7] A. Brauer, “On Addition Chains,” Bull. Amer. Math. Soc., vol. 45,
1939, pp. 736-739.

[8] B. Moller, “Algorithms for Multi-exponentiation,” Proc. of SAC,
LNCS 2259, Springer-Verlag, 2001, pp. 165-180.

[9] R. Avanzi and P. Mihailescu, “Generic Efficient Arithmetic
Algorithms for PAFFs (Processor Adequate Finite Fields) and
Related Algebraic Structures,” Proc. of SAC, LNCS 3006, Springer-
Verlag, 2003, pp. 320-334.

[10] D. Bailey and C. Paar, “Optimal Extension Fields for Fast Arithmetic
in Public-Key Algorithms,” Proc. of Asiacrypt, LNCS 1976, 2000,
pp. 248-258.

[11] D. Freeman, “Constructing Pairing-Friendly Elliptic Curves with
Embedding Degree 10,” Proc. of ANTS-VII, LNCS 4076, Springer-
Verlag, 2006, pp. 452-465.

Yasuyuki Nogami graduated from Shinshu
University in 1994 and received the PhD degree
in 1999 from Shinshu University. He is now a
research associate of Okayama University. His
main fields of research are finite field theory and
its applications. He is a member of IEICE and
IEEE.

Hidehiro Kato graduated from Okayama
University in 2005 and obtained the MS degree
in 2006. He is now a doctoral candidate of the
Graduate School of Natural Science and
Technology, Okayama University. He is
studying finite field theory, especially the
implementation of fast arithmetic operations in a

finite field. He is a member of IEICE.

Kenta Nekado graduated from the Department
of Communication Network Engineering, the
Faculty of Engineering, Okayama University, in
2007. He is now with the Graduate School of
Natural Science and Technology, Okayama
University, where he is studying finite field
theory.

Yoshitaka Morikawa graduated from the
Department of Electronic Engineering, Osaka
University in 1969, and obtained the MS degree
in 1971. He then joined Matsushita Electric,
where he engaged in research on data
transmission. In 1972, he became a research
associate at Okayama University, and

subsequently became an associate professor in 1985. He is now a
professor of the Graduate School of Natural Science and Technology.
He has been engaged in research on image information processing. He
holds a Deng degree.

