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This paper proposes an exponentiation method with 
Frobenius mappings. The main target is an exponentiation 
in an extension field. This idea can be applied for scalar 
multiplication of a rational point of an elliptic curve 
defined over an extension field. The proposed method is 
closely related to so-called interleaving exponentiation. 
Unlike interleaving exponentiation methods, it can carry 
out several exponentiations of the same base at once. This 
happens in some pairing-based applications. The 
efficiency of using Frobenius mappings for exponentiation 
in an extension field was well demonstrated by Avanzi and 
Mihailescu. Their exponentiation method efficiently 
decreases the number of multiplications by inversely using 
many Frobenius mappings. Compared to their method, 
although the number of multiplications needed for the 
proposed method increases about 20%, the number of 
Frobenius mappings becomes small. The proposed 
method is efficient for cases in which Frobenius mapping 
cannot be carried out quickly. 
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I. Introduction 

Recently, pairing-based cryptographic applications such as ID-
based cryptography [1], group signature authentication [2], and 
broadcast encryption [3] have received much attention. Pairings 
such as the Weil, Tate, Eta, and Ate pairings are bilinear 
mappings from two subgroups in a certain elliptic curve to a 
subgroup in a certain extension field [4]-[6]. A pairing calculation 
needs an exponentiation in an extension field. The computation 
time of the exponentiation is about half of the total computation 
time of a pairing calculation. In addition, those pairing-based 
cryptographic applications need many exponentiations in an 
extension field. Such exponentiations in an extension field are 
the subject of this paper. This paper proposes a new 
exponentiation method with Frobenius mappings. 

The most widely used binary method calculates an 
exponentiation an by using the binary representation of 
exponent n. It iterates squaring and multiplying. The binary 
method needs 2log n⎢ ⎥⎣ ⎦ squares and 2log / 2n⎢ ⎥⎣ ⎦ multiplications 
on average. The window method [7] calculates exponentiations 
more efficiently; however, it still needs 2log n w−⎢ ⎥⎣ ⎦  squares, 
where w is the window size. Moreover, it is not very efficient 
when the base a changes often. The proposed exponentiation 
method is closely related to the so-called interleaving 
exponentiation method [8]. In contrast to interleaving 
exponentiation methods, the proposed method can compute 
several exponentiations of the same base at once. For example, 
when A∈Fpm and x, y, and z are large positive integers, our 
exponentiation method can compute Ax, Ay, and Az at once. 
Note that the proposed method is efficiently applied when the 
extension degree m is equal to 1. The use of Frobenius 
mappings for efficient exponentiation in an extension field was 
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well demonstrated by Avanzi and Mihailescu [9]. When the 
exponent n is sufficiently larger than the characteristic p and the 
Frobenius mapping is carried out fast in the concerned extension 
field, using Frobenius mappings accelerates exponentiations 
because the number of squares required for an exponentiation 
decreases to 2log ( 1)p −⎢ ⎥⎣ ⎦ . On the other hand, 2log / 2n⎢ ⎥⎣ ⎦  
multiplications on average are still needed. To decrease the 
number of multiplications, the window method can be applied in 
addition to Frobenius mappings. Based on this idea, Avanzi and 
Mihailescu [9] proposed a fast exponentiation method called the 
Frobenius abusing exponentiation method. This method 
decreases the number of multiplications; however, the number of 
Frobenius mappings inversely increases. Thus, it still has two 
problems. First, it is not very efficient when the base often 
changes, and secondly, it needs fast Frobenius mapping in the 
concerned extension field. 

It is well-known that an optimal extension field (OEF) 
whose modular polynomial is an irreducible binomial has a fast 
Frobenius mapping [10]. In order to construct the degree-m 
extension field Fpm over Fp as an OEF, each prime factor of m 
needs to divide p–1. This sometimes becomes a critical 
condition. For example, consider Freeman’s curve [11] whose 
embedding degree is 10. The characteristic p of the underlying 
finite field must satisfy 

4 3 225 25 25 10 3p χ χ χ χ= + + + +         (1) 

for a certain integer χ . From this condition, it is found that the 
field of definition of the curve Fp10 cannot be prepared as an 
OEF. In detail, it is because p–1 and p+1 are not divisible by 5. 
In this case, one would adopt an irreducible trinomial as its 
modular polynomial, so a Frobenius mapping in Fp10 will need 
almost the same calculation cost as a multiplication in Fp10. This 
is an example of a curve whose field of definition does not 
have fast Frobenius mapping. 

To overcome these problems, this paper proposes an 
exponentiation method for extension fields that efficiently uses 
Frobenius mappings but is not based on the window method. 
Compared to Avanzi’s method [9], the number of multiplications 
needed for the proposed method increases by about 20%; 
however, the number of Frobenius mappings is reduced. 
Evaluating the calculation costs, it is shown that the proposed 
exponentiation method is sufficiently practical for cases in which 
the base is often changed and a Frobenius mapping cannot be 
carried out quickly in the concerned extension field. In this paper, 
we deal with the example of an extension field Fpm over prime 
field Fp; however, the proposed method can easily be extended 
for an extension field Fqm over some extension field Fq, q = pi. 
The proposed method is also applied for a scalar multiplication 

of a rational point of an elliptic curve defined over an extension 
field. The basic idea is efficiently applied in solving the plurality 
of general exponentiations of the same base at once. Moreover, 
the proposed method is efficient for fixed base scalar 
multiplication of elliptic curve cryptography. 

Throughout this paper, p and m denote the characteristic and 
extension degree, respectively, where p is a prime number, and 
F *

p m denotes the multiplicative group in Fpm. Unless otherwise 
noted, lower and upper case letters show elements in the prime 
field and extension field, respectively. Greek characters denote 
zeroes of modular polynomials. 

II. Preparation 

In this section, let us briefly go over bases of extension fields, 
Frobenius mappings, the binary method, the window method, 
and previous work. 

1. Bases of Extension Fields 

To construct arithmetic operations in Fpm, we usually need an 
irreducible polynomial f(x) of degree m over Fp. Let ω be a 
zero of f(x) in Fp

m, then the following set forms a basis of Fpm 
over Fp: 

2 1{1, , , , },mω ω ω −               (2) 

which is called a polynomial basis. An arbitrary element A in 
Fpm is written as 

1
0 1 1 .m

mA a a aω ω −
−= + + +            (3) 

Its vector representation A is vA = (a0, a1,…, am-1). A 
multiplication and an inversion in Fpm are carried out by using 
f(ω) = 0; thus, f(x) is called the modular polynomial of Fpm. 
When the following conjugates of ω with respect to Fp are 
linearly independent: 

2 1

{ , , , , },
mp p pω ω ω ω

−

             (4) 

this is called a normal basis, which allows us to use an efficient 
Frobenius mapping. 

Consider the normal basis (4) in Fp
m and an arbitrary element 

A in Fpm as follows: 
1

0 1 1

0 1 1( , , , ).

mp p
m

m

A a a a
a a a
ω ω ω

−

−

−

= + + +
=

         (5) 

The Frobenius mapping is defined by 

2 1

0 1 2 1

1 0 2

:

( , , , ).

m

p

p p p p
m m

m m

A A

A a a a a
a a a
ω ω ω ω

−

− −

− −

→

= + + + +

=
      (6) 
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Thus, using a normal basis, we can carry out a Frobenius 
mapping without any arithmetic operations. 

An optimal extension field (OEF) [10] whose modular 
polynomial is an irreducible binomial has a fast Frobenius 
mapping. Consider the OEF Fp

m with the following irreducible 
binomial over Fp as the modular polynomial: 

( ) , .m
pf x x s s F= − ∈               (7) 

Note that the OEF uses a polynomial basis given by 
2 1{1, , , , },mω ω ω −                 (8) 

where ω is a zero of f(x). When m divides p–1, for instance, the 
Frobenius map of A∈Fpm is given as 

2 ( 1)
0 1 2 1

2 2 1 1
0 1 2 1 ,

p p p m p
m

m m
m

A a a a a

a a l a l a l

ω ω ω

ω ω ω

−
−

− −
−

= + + + +

= + + + +
      

(9)
 

where l=s( p –1) / m because ω p is given by 

1 ( 1) / ( 1) /( ) .p p m p m p msω ω ω ω ω ω− − −= ⋅ = = ⋅      (10) 

Thus, previously computing l i for i = 1, 2,…, m–1, the 
Frobenius mapping in the OEF carries out only m–1        
Fp-multiplications. On the other hand, when the modular 
polynomial is a degree m irreducible trinomial over Fp, the 
Frobenius mapping in Fpm will need to multiply an (m×m) matrix 
over Fp. In appendix A, some Frobenius matrices are shown. In 
what follows, we use the following notation: ϕi (A) = A p i . 

2. Binary Method 

The well-known binary method quickly calculates an 
exponentiation with a large integer exponent. Let n be a positive 
integer. The binary method calculates An as follows. 

 
Algorithm 1. (right-to-left binary method) 

Input: A and exponent n 
Output: B = An 

Main procedure: 
 1. X ← 1, B ← A. 
 2. If n = 0, output X. 
 3. Otherwise, 
 4. if (n & 1) = 1, X X B← ⋅ . 
 5. B B B← ⋅ . 
 6. n ← n >> 1, then go to step 2. 
 7. Output B. 

                            (end of algorithm)  
In what follows, & and >> in algorithms denote the bit-and and 
bit-shift operators, respectively. The binary method needs only 
⎣ ⎦n2log  squares and ⎣ ⎦ 2/log2 n multiplications on average. 

3. Window Method 

Here, we give an example of how to use the window method 
(with window size 3) to calculate An. First, precompute the 
values 

A2, A3, A4,…, A7,              (11) 

whose exponents correspond to the following binary 
representations, respectively: 

2=(010)2,  3=(011)2,  4=(100)2,…,  7=(111)2.    (12) 

Then, we calculate An by combining and squaring these 
previously calculated components. For example, when 
exponent n is 318, An is calculated as 

A318 = A(100111110)2 ={(A(100)2)23
 (A(111)2)}23

 A(110)2.  (13) 

The window size w corresponds to the bit length of each 
segment. The window method is efficient for repeatedly 
calculating exponentiations with the same base. Note that the 
window method still needs ⎣ ⎦ wn −2log  squares as shown in 
(13). When the base is often changed, we cannot efficiently 
precompute the components as in (11). We must precompute 
new values for every exponentiation base. 

4. Previous Works 

Let us briefly go over the Frobenius abusing exponentiation 
method proposed by Avanzi and others [9]. Note that, as 
introduced in [9], this method requires very fast Frobenius 
mappings. Write the exponent n as 

0
, 0 1, log ,

s
i

i i p
i

n n p n p s n
=

⎢ ⎥= ≤ ≤ − = ⎣ ⎦∑       (14) 

and for some 

2log , / ,w u p K u w<< = =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦         (15a) 

1

0

2 .
K

jw
i ij

j

n n
−

=

= ∑                (15b) 

Then, calculate An in Fpm as 

 

1
2

0 0 0

21

0 0

( ) ( )

( ) .

jw
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jw

ij

s s K
nnn

i i
i i j

K s
n

i
j i

A A A

A

ϕ ϕ

ϕ

−

= = =

−

= =

= =

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

∏ ∏∏

∏ ∏
       (16) 

This method makes efficient use of the window method to 
calculate Anij. Compared to just applying the window method in 
addition to Frobenius mappings, (16) decreases the number of 
multiplications but increases the number of Frobenius mappings. This 
algorithm needs u+1 squarings, (s+1)K+2w–2 multiplications, and 
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sK Frobenius mappings. Avanzi and others [9] introduced several 
efficient exponentiation methods such as baby-window giant-
window exponentiation. The Frobenius-abusing exponentiation 
previously described is the most efficient of these methods. 

III. Exponentiation in an Extension Field 

In what follows, let us consider an exponentiation An, A∈Fpm, 
and let m be larger than or equal to 2. 

1. Main Idea 

Consider the p-adic representation of the exponent n as (14). 
Then, using the Frobenius mapping ϕ, the exponentiation An is 
calculated by 

0

( ).i

s
nn

i
i

A Aϕ
=

= ∏                (17) 

The component Ani is denoted by A[i] in algorithm 2. Then, 
exponentiation An is calculated by the binary method with 
Frobenius mappings as follows. Equation (17) leads to the well-
known p-adic expansion method, which is given here.  

 
Algorithm 2 

Input: An element A∈Fpm and an exponent n 
Output: C = An 
Main procedure: 
 1. B ← A, s ← log p n⎢ ⎥⎣ ⎦ , t ← 2log ( 1)p −⎢ ⎥⎣ ⎦ . 
 2. For 0 ≤ i ≤ s, A[i] = 1. 
 3. If n = 0, output 1. 
 4. Otherwise, 
 5.  Calculate the p-adic representation of n as (14),
 6.  for 0 ≤ j < t, 
 7.    for 0 ≤ i ≤ s, 
 8.      if (ni & 1) = 1, A[i] ← A[i]·B. 
 9.      ni ← ni >> 1. 
10.    B ← B·B. 
11.  C = A[s]. 
12.  for s − 1 ≥ j ≥ 0, 
13.     C ← ϕ1(C), C ← C·A[j]. 
14.  Output C. 

                               (end of algorithm)  
As described section II.4, Avanzi’s method extended algorithm 2 
by efficiently using the window method. 

This algorithm needs t squares and on average st/2 
multiplications in Fpm. After that, (17) needs (s–1) Frobenius 
mappings and (s–1) multiplications. 

We improve algorithm 2. In what follows, using a concrete 
example and Fig. 1, the main idea is explained. For instance, let 
s= log p n⎢ ⎥⎣ ⎦  and t= 2log ( 1)p −⎢ ⎥⎣ ⎦  be 5 and 4, respectively. 

Suppose the binary representations of n0 , n1 ,…, n5 are 

n1 = (1001)2,   n0 = (1110)2,             (18a) 

n3 = (1101)2,   n2 = (1110)2,             (18b) 

n5 = (1111)2,   n4 = (0101)2.             (18c) 

Let us separate exponent n into three parts as follows (see Fig. 
1): 

n = (n5 p +n4) p4 + (n3 p +n2) p2 + (n1 p +n0).      (19) 

For this p-adic expansion, the following procedure is our 
proposal. Consider two sets G1 ={An5, An3, An1} and G2 = {An4, 
An2, An0}. They are given as 

 01 8 1 8 4 2, ,nnA A A A A A A= =          (20a) 
3 28 4 1 8 4 2, ,n nA A A A A A A A= =          (20b) 
5 48 4 2 1 4 1, ,n nA A A A A A A A= =             (20c) 

As shown in (18) and (20), component A2 is needed for An5 in 
G1 and An0, An2 in G2. Component A4 is needed for An3, An5 in G1 
and An0, An2, An4 in G2 (see Fig. 1), for example. Note that     
Ap =ϕ1(A). Then, calculate C001, C010,…, C111 as (see Fig. 1) 

C100 =ϕ1(A2)A1,   C010 = 1,   C001 =1,      (21a) 

C011 = A8 A2,     C101 = 1,              (21b) 

C110 =ϕ1(A4),    C111 =ϕ1(A8 A1)A4.       (21c) 

Then, An is calculated as 

R0 = C100 C101 C110 C111,             (22a) 

R1 = C010 C011 C110 C111,             (22b) 

R2 = C001 C011 C101 C111,             (22c) 

An = ϕ4(R2) ϕ2(R1) R0.              (22d) 

Equations (17) and (20) need 3 squares and 16 
multiplications without using the sliding window method; 
however, (21) and (22) need 3 squares and only 14 
multiplications. Thus, the p-adic representation and Frobenius 
mappings shown in (17) help to decrease the number of 
squares, and calculation based on (21) helps to decrease the 
number of multiplications. Figure 1 shows the calculations of 
(18)-(22). From another viewpoint, (22) just calculates three 
exponentiations of the same base at once. 

To decrease the number of multiplications, Avanzi’s method 
additionally applies the window method to calculate Ani. 
However, this increases the number of Frobenius mappings 
required; therefore, it requires fast Frobenius mapping. In the 
proposed method we take a different approach. The number of 
multiplications increases slightly, but the number of Frobenius 
mappings is much smaller than in Avanzi’s method. 
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Fig. 1. Image of the calculating (18) to (22). 

n = ( n5 p  + n4 )p4 + ( n3 p  + n2 )p2 + ( n1 p  + n0 )
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Accordingly, the proposed method is more efficient when the 
target extension field does not have fast Frobenius mapping. 

2. Proposed Algorithm 

As shown in Fig. 1, let the numbers of rows and columns be 
r and c, respectively. Write the exponent n in the form 

1 1

0 0
.

r c
ci j

ij
i j

n n p
− −

+

= =

= ∑∑              (23) 

The number of columns c is automatically determined by the bit-
size of n and the number of rows r. The proposed method 
calculates An as 

    
1

0
| 2 ( & 2 ) , 0 ,

r
i x

jl ij
i

S x n l x t
−

=

⎧ ⎫
= = ≤ <⎨ ⎬

⎩ ⎭
∑      (24a) 

where 0 j c≤ <  and 1 2 ,rl≤ <  

{ | (2 & ) 2 , 1 2 1},i i r
iT y y y= = ≤ < −        (24b) 

where 0 ,i r≤ <  

1
2

0

1 when 0,

otherwise,
k

jl

jl

c
l

j
j k S

S

C
Aϕ

−

= ∈

=⎧
⎪

⎛ ⎞= ⎨ ⎜ ⎟⎪ ⎜ ⎟
⎝ ⎠⎩

∏ ∏
      (24c) 

where 1 2 ,rl≤ <  

( )
1

0

, 0 .ij

i

c
n

i j u
j u T

R A C i rϕ
−

= ∈

= = ≤ <∏ ∏        (24d) 

( )
1

0

.
r

n
ci i

i

A Rϕ
−

=

= ∏                        (24e) 

It is found that | Sjl |≤ t and | Ti | = 2r–1. Equation (24a) gives the 
set of binary representations related to column bits such as the 
subscript 100 of C100 shown in Fig. 1. Equation (24b) gives the set 
of integers from 1 to 2r–1 whose i-th bit is equal to 1. Equation 
(24c) shows the temporary data Cl that is calculated as the product 
of A2k, k∈Sjl , 0≤ j< c-1 by appropriately using their Frobenius 
mappings. When Sjl is empty, that is denoted by 0. Set Cl=1 for the 
following calculations. Equation (24d) calculates Ri for the i-th row 
by multiplying Cu such that u belongs to Ti. Finally, (24e) 
calculates the exponentiation An by using previously calculated Ri, 
their Frobenius mappings, and (r –1) multiplications in Fpm. 

Algorithm 3 shows the proposed exponentiation. First, the lines 
1 to 4 initialize the computational buffers. If the exponent n = 0, it 
outputs 1. Otherwise, it calculates the p-adic representation of n as 
(23). Then, it calculates the Cl, 1≤ l < 2r as (24c) in lines 8 to 17. In 
detail, lines 10 to 13 calculate the Sjl, 0≤ j< c, 1≤ l<2r as (24a). 
When Sjl ≠ 0, by using the k’s in Sjl, lines 10 to 14 calculate the 
product 

k

jl
ASk

2∏ ∈ shown in (24c). Their Frobenius mappings 
construct the Cl in lines 15 to 17. Then, lines 18 to 20 calculate the 
Ri, 0≤ i<r for u∈Ti as (24d). Finally, lines 21 to 23 construct the 
result An as (24e). 

In the proposed method, the number of temporary variables Cl 
and Ri is (2r − 1) + r as shown in (24). The preparation of Cl, 1≤l<2r 
needs at most c · t multiplications, where t =⎣ ⎦)1(log2 −p . Using 
them, An is calculated with less than r(2r−1 − 1) + (r − 1) 
multiplications as shown in (24d) and (24e). In addition, the 
proposed algorithm needs (c − 1)(2r − 1) + (r − 1) Frobenius 
mappings. 

IV. Cost Evaluation 

In evaluating the cost of the calculation, a subtraction in Fp is 
counted as an addition in Fp. As introduced in the preceding  
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Table 1. Comparison of the calculation cost for an exponentiation in Fpm. 

Degree m 3 4 5 6 7 

Proposal 
Eqs.(24) 

r = 3, c = 1 
(159, 150, 2) 

r = 4, c= 1 
(159, 180, 3) 

r = 5, c = 1 
(159, 234, 4) 

r = 3, c = 2 
(159, 290, 9) 

r = 4, c = 2 
(159, 320, 18) 

Avanzi 
Eq.(16) 

w = 5 
(160, 125, 61) 

w = 5 
(160, 156, 92) 

w = 5 
(160, 187, 123) 

w = 5 
(160, 218, 154) 

w = 6 
(156, 249, 159) 

Degree m 8 9 10 11 12 

Proposal 
Eqs.(24) 

r = 4, c = 2 
(159, 330, 18) 

r = 5, c = 2 
(159, 383, 35) 

r = 5, c = 2 
(159, 388, 35) 

r = 4, c = 3 
(159, 470, 33) 

r = 4, c = 3 
(159, 480, 33) 

Avanzi 
Eq.(16) 

w = 6 
(156, 275, 185) 

w = 6 
(156, 302, 212) 

w = 6 
(156, 328, 238) 

w = 6 
(156, 354, 264) 

w = 6 
(156, 381, 291) 

 Remark : (#S, #M, #F) means that #S squares, #M multiplications, and #F Frobenius mappings in Fpm are respectively needed on average. 

sections, one of targets of the proposed exponentiation method is 
the case in which a Frobenius mapping cannot be carried out fast 
in the concerned extension field. 

 
Algorithm 3. (proposed algorithm) 

Input: An element A∈Fpm and an exponent n 
Output: D = An 
Main procedure: 
1. B[0] ← A, t ← 2log ( 1)p −⎢ ⎥⎣ ⎦ . 

  2.  For 1 ≤ i < t, B[i] ← B[i−1] · B[i−1]. 
  3.  For 0 < i ≤ 2r, C[i] =1. 
  4.  For 0 ≤ i < r, R[i] =1. 
  5.  If n = 0, output 1. 
  6.  Otherwise, 
  7.    calculate the p-adic representation of n as (23),
  8.    for c > j ≥ 0, 
  9.       for 0 ≤ k < t, 
 10.         l = 0, 
 11.         for 0 ≤ i < r, 
 12.           if (nij & 1) = 1, l ← l+2i. 
 13.           nij ← nij >> 1. 
 14.         if l ≠ 0, C[l] ← C[l]·B[k]. 
 15.       if j ≠ 0, 
 16.         for 1 ≤ i < 2r, 
 17.           C[i] ←  ϕ1(C[i]). 
 18.    for 0 ≤ i < r, 
 19.      for 1 ≤ u < 2r, 
 20.        if (2i & u) ≠ 0, R[i] ← R[i]·C[u]. 
 21.    D ← R[r−1]. 
 22.    for r − 2 ≥ i ≥ 0, 
 23.      D ← ϕc(D), D ← D·R[i]. 
 24.  output D 

                         (end of algorithm)  

In this section, we simulate exponentiation over an extension 
field with a random160-bit characteristic p and extension degree  

Table 2. Comparison of the proposed method baby-window giant-
window method [9] in the case of 32-bit characteristic. 

Degree m 4 6 8 

Proposed method 
r = 4, c = 1 
(31, 58, 3) 

r = 3, c = 2 
(31, 65, 9) 

r = 4, c = 2
(31, 88, 18)

Baby-window giant-
window method [9] 

w = 1 
(31, 63, 3) 

w = 2 
(31, 87, 5) 

w = 2 
(31, 111, 7)

 Remark : (#S, #M, #F) means that #S squares, #M multiplications, and #F Frobenius 
mappings in Fpm are respectively needed on average. 

 
 
m = {3, 4, 5, 6, 7, 8, 9, 10, 11, 12}. Algorithm 3 and Avanzi’s 
method were compared in Fpm. Inputting 10,000 random 
elements in Fpm as the bases and (m log2 p)-bit random integers 
as an exponent, the calculation costs for the proposed method 
and Avanzi’s method were computed. Table 1 shows a 
comparison of the average calculation cost for an exponentiation 
in Fpm using the proposed method and Avanzi’s method [9]. Row 
size r and column size c as in (24) in the proposed method and 
the window size w of (15) of Avanzi’s method were set to the 
experimentally optimal values corresponding to each pair of p 
and m. 

Table 1 shows the numbers of Fp-squarings, Fp-multiplications, 
and Frobenius mappings. For example, when m = 3, the proposed 
method with r = 3 and c = 1 needs 159 Fp-squarings, 150 Fp-
multiplications, and 2 Frobenius mappings. Compared to Avanzi’s 
method, the proposed exponentiation method needs more Fp-
multiplications but fewer Frobenius mappings. As introduced in 
section II.1, in some cases, Frobenius mapping becomes 
complicated. Thus, in such cases, the proposed method will be 
more efficient than Avanzi’s method [9]. 

Avanzi and others [9] also introduced the baby-window giant-
window exponentiation method in which p is a 32-bit prime. Table 
2 shows a comparison of the proposed method and the baby-
window giant-window method [9]. In this case, the proposed 
exponentiation method is also more efficient. 
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V. Conclusion 

This paper has proposed an exponentiation method in an 
extension field that efficiently uses Frobenius mappings. 
Compared to Avanzi’s method [9], about 20% more 
multiplications are needed for the proposed method; however, the 
number of Frobenius mappings is low enough. Evaluating the 
calculation costs, it was shown that the proposed exponentiation 
method is practical for cases in which the base of exponentiation is 
often changed and a Frobenius mapping cannot be carried out fast 
in the concerned extension field. As a future work, the number of 
Fp-multiplications for the proposed method should be further 
decreased. 

Appendix A. Frobenius Matrices 

For example, consider the following parameters: 

,10=m                                (A1a) 

4212134911p = (32-bit),                 (A1b) 

irreducible binomial ,2: 10 +x               (A1c) 

irreducible trinomial .13: 10 ++ xx           (A1d) 

 

Equation (A2) shows Frobenius matrix Mn for a normal basis.  
This means that Frobenius mapping is simply carried out by 

cyclic-shift operation. Thus, using an extension field inversely 
becomes complicated. Equation (A3) shows Frobenius matrix 
Mb for a polynomial basis given by using irreducible binomial 
(A1c) as the modular polynomial. The main diagonal 
coefficients of Mb denote li of (9) introduced in section II.1. 
Thus, previously computing Mb, Frobenius mapping is carried 
out only by (m−1) Fp-multiplications. Equation (A4) shows 
Frobenius matrix Mt for a polynomial basis given by using 
irreducible trinomial (A1d) as the modular polynomial. The 
first row of Mt is always (1, 0,···, 0) because the first entry of 
the polynomial basis is 1; however, other rows depend on the 
modular trinomial. Thus, in this case, Frobenius mapping 
requires about m2 Fp-multiplications. In this case, the proposed 
exponentiation method works efficiently. 

In the above introduction, polynomial bases are considered 
for irreducible binomials and trinomials because such special 
irreducible polynomials are usually adopted to efficiently carry 
out multiplication in an extension field. In detail, they are 
efficient for polynomial modulo operation since the number of 
non-zero coefficients is small. 
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⎣

⎡

=
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1000000000
0100000000
0010000000
0001000000
0000100000
0000010000
0000001000
0000000100
0000000010

nM                                                                     (A2)
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3763510599000000000
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0000000001
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243411975423986191 12014272433524266107212922801 27623467763389663137135083084231842909763875561743
445640071351836013766029264  3507562462140088973916975559782613575938628081742 2336381105822289555
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