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This paper proposes an efficient scalar multiplication 
algorithm for hyperelliptic curves, which is based on the 
idea that efficient endomorphisms can be used to speed up 
scalar multiplication. We first present a new Frobenius 
expansion method for special hyperelliptic curves that 
have Gallant-Lambert-Vanstone (GLV) endomorphisms. 
To compute kD for an integer k and a divisor D, we 
expand the integer k by the Frobenius endomorphism and 
the GLV endomorphism. We also present improved scalar 
multiplication algorithms that use the new expansion 
method. By our new expansion method, the number of 
divisor doublings in a scalar multiplication is reduced to a 
quarter, while the number of divisor additions is almost 
the same. Our experiments show that the overall 
throughputs of scalar multiplications are increased by 15.6 
to 28.3 % over the previous algorithms when the 
algorithms are implemented over finite fields of odd 
characteristics. 
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I. Introduction 

Since Diffie and Hellman introduced the idea of public key 
cryptography [2], various public key cryptosystems have been 
proposed, and they now have numerous applications in such 
areas as electronic banking, electronic commerce, network 
authentication, and so on. In particular, a recent remarkable 
growth in the market of mobile banking and mobile commerce 
has brought up the need of public key mechanisms optimized 
for resource-constrained devices. Hence, many standard bodies 
are adopting elliptic curve cryptography (ECC) in their public 
key cryptography standards, since ECC requires only a small 
amount of memory to store cryptographic keys. For example, 
160-bit ECC is equivalent to 1024-bit RSA from the viewpoint 
of cryptanalysis. 

On the other hand, hyperelliptic curve cryptography (HECC) 
has been introduced by Koblitz [3] as a generalization of ECC 
(an elliptic curve can be viewed as a genus 1 hyperelliptic 
curve). Although HECC is attractive to designers of resource-
constrained systems since it requires smaller fields than ECC, it 
has been believed to be less practical than ECC due to its poor 
performance. However, recent implementations of HECC, for 
example [4], have achieved a performance comparable to that 
of ECC, making HECC a good alternative. 

The most time consuming operation in HECC is a scalar 
multiplication by an integer k, that is, computing kD for a 
divisor D on the Jacobian of a curve. In this paper, we will 
present a method to speed up this operation. 

We begin by examining existing methods. In elliptic curves, 
Koblitz [5] proposed curves that are defined over the binary field 
but whose coordinates are on suitably large extension fields, 
which are called Koblitz curves. The idea of elliptic Koblitz 
curves was improved by an extensive research [6]-[10], and was 
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generalized to hyperelliptic curves by Günter, Lange, and Stein 
[11]. They investigated two special examples of genus 2 curves 
defined over a binary field using the Frobenius map. Lange [12] 
gave a detailed investigation on small genus hyperelliptic Koblitz 
curves defined over small fields using the Frobenius map. In 
Lange [12] and Choie and Lee [13], the Frobenius expansion 
method was generalized to the finite field of any characteristic. 

Gallant, Lambert, and Vanstone [14] introduced a 
decomposition method (GLV) using special elliptic curves that 
have efficiently computable endomorphisms other than 
Frobenius maps. The idea of their method is to decompose an 
integer k into two components such that the size of each 
component is half that of k. Sica and others [15] improved the 
bound of these two components of the decomposition. And 
Park, Jeong, and Lim [16] extended the GLV method [14] to 
hyperelliptic curves that have efficiently computable 
endomorphisms in their own way. 

In this paper, we propose a new Frobenius expansion method 
for hyperelliptic curves with efficiently computable 
endomorphisms. To compute kD for an integer k and a divisor 
D, we expand the integer k by the Frobenius endomorphism 
ϕ , that is, ,

0
∑

=

=
l

i

i
irk ϕ where the coefficients ri are of the 

form 3
3

2
210 ρρρ iiii rrrr +++ or 3

3
2

210 γγγ iiii rrrr +++  
),( Z∈ijr  and ρ and γ are efficiently computable 

endomorphisms used in [16]. Park, Lee, and Park [17] gave a 
similar Frobenius expansion method in elliptic curves. 

Our method can be used to improve the known scalar 
multiplication algorithms for hyperelliptic curves that use the 
Frobenius expansion [12], [13]. While the methods of [12] and 
[13] focused on small characteristic fields, our method is 
applied to the fields of large characteristic, for example, 
optimal extension fields (OEFs). When our method is applied 
to known scalar multiplication algorithms, the number of 
divisor doublings in a scalar multiplication is reduced to a 
quarter, while the number of divisor additions remains almost 
the same. Our experiments show that the overall throughputs of 
scalar multiplications are increased by 15.6 to 28.3 % over the 
previous algorithms when the algorithms are implemented 
over ,np

F where p and n are prime. 

II. Preliminaries 

1. Basic Definitions 

We first provide the basic definitions about the arithmetic of 
hyperelliptic curves [3], [18]. Let Fq be a finite field with q 
elements, and let qF be its algebraic closure. A nonsingular 
hyperelliptic curve C of genus g over Fq is defined by an equation 

of the form 
2:  ( ) ( )C y h x y f x+ = ,               (1) 

where ],[)(),( xxfxh qF∈  f is monic, degxf = 2 g + 1,  
degx ,gh ≤ and there are no solutions qqyx FF ×∈),( that 
simultaneously satisfy (1) and the partial derivative equations 
2y+h(x)=0 and '( ) '( ) 0.h x y f x− =  Let K be an extension field 
of Fq in qF . The set C(K) of K-rational points on C consists of all 
points ( , )x y K K∈ ×  that satisfy (1), together with a point at 
infinity denoted by .∞  Let ( , )P x y= ≠ ∞  be a point on C. 
The opposite of P is the point P~ =(x, –y–h(x)). 

Unlike elliptic curves, there are no natural group laws on C(K) 
for hyperelliptic curves of genus g≥ 2. Therefore, the group law is 
defined on the Jacobian of C over Fq as follows. A divisor is a 
formal sum ,∑ ∈

=
CP P PmD  where Pm ∈Z  and 0Pm =  

for almost all .P C∈  The degree of D is the integer .PP C
m

∈∑  
The set of all divisors, denoted by D, forms an additive group. The 
set of all divisors of degree 0, denoted by D0, is a subgroup of .D  
The divisor of a rational function *)(Cf qF∈  is defined by 

( ) ( )PP
div f ord f P= ∑ , where ordP (f) is the order of the 
vanishing of f at P. A divisor 0D∈D is called a principal divisor 
if D=div(f) for some rational function .)( *Cf qF∈  The set of 
all principal divisors, denoted by P, is a subgroup of D0. 

The quotient group P
DJ

0
=  is called the Jacobian of curve C. 

The Jacobian is an abelian variety whose dimension is the genus of 
curve C [19]. By the Riemann-Roch theorem, every divisor 

0D∈D  can be uniquely represented as an equivalence class in J 
by a reduced divisor of the form ∑∑ ∞− iii mPm  with 

.gmi ≤∑ Due to Mumford [20], a reduced divisor can be 
represented by a pair of polynomials u(x) and ][)( xxv qF∈  for 
which degx v < degx u ≤ g, and v(x)2+h(x)v(x) –f(x) is divisible 
by u(x). Divisor D is the equivalence class of the GCD of the 
divisors of functions u(x) and v(x) –y, denoted by div(u, v).  

The addition algorithms in the Jacobian were presented by 
Koblitz [3], and are a generalization of the earlier algorithms of 
Cantor [21]. Using explicit formulae in affine coordinates, one 
addition in a genus 2 hyperelliptic curve needs one inversion, three 
squarings, and 22 multiplications [22].  

The scalar multiplication by an integer k is defined by 

.
k

DDDkD +++=  
The discrete logarithm problem in the Jacobian is the problem of 

determining Z∈k  given two divisor classes D1 and D2, such 
that D2=kD1 if such k exists. 

2. Hyperelliptic Curves with Efficient Endomorphisms 

Park, Jeong, and Lim [16] collected the following hyperelliptic 
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curves over Fq, which have efficiently computable 
endomorphisms.  

Example 1. Let X be a hyperelliptic curve of genus g over Fq 
given by (1). The q-th power map, called the Frobenius map,  

),,(),(
:

qq yxyx
XX

→

→ϕ
 

induces an endomorphism on the Jacobian. The characteristic 
polynomial of the Frobenius map ϕ  is given by  

,1
11

1
12

1
2 ggg

g
g

g
gg qtaqtqatatattP +++++++= −−

−
−)(  

where a0=1, and 11110 −− +++= iiii aSaSaSia  for 
.)(and1),1( iqi

i
ii XNgiqNS F=≤≤+−=  

Example 2. [23], [24] Let p≡1 mod 5 be prime. Consider the 
hyperelliptic curve X1 of genus 2 over the field Fp defined by 

X1: y2 = x5 + a.                    (2) 

The endomorphism ρ  defined by ),(),( 5 yxyx ζ  
induces an efficient endomorphism on the Jacobian, where 5ζ  is a 
5th root of unity. The characteristic polynomial of ρ  is given by 

P( t ) = t 4 + t 3 + t 2 + t + 1. 

The formulae for ρ on the Jacobian are given by 

.00
],[],[

],[],[

00500

01
1

50515
2

0101
2

baxbax
bxbaxaxbxbaxax

ζ
ζζζ

++
++++++ −

 

Example 3. [16] Let p≡1 mod 8 be prime. Consider the 
hyperelliptic curve X2 of genus 2 over the field Fp defined by 

X2 : y2 = x5 + ax.                   (3) 

Then, γ  on X2 defined by ),(),( 8
2
8 yxyx ζζ induces an 

efficient endomorphism, where 8ζ  is an 8th root of unity. The 
characteristic polynomial of γ  is given by P(t) = t 4 + 1. The 
formulae for γ  on the Jacobian are given by  

.00

],[][

],[],[

080
2

0,0

081
1

80
4

1
2
8

2
0101

2

8

8

baxbax

bxbaxaxbxbaxax

ζζ

ζζζζ

++

++++++ −

 

3. Lattices and Endomorphism Rings 

In this section, we introduce isomorphic properties between 
lattices and endomorphism rings of (hyper) elliptic curves. By 2- 
and 4-dimensional lattices in the complex plane C, we shall mean 

subgroups which are free of dimension 2 and 4 over Z, 
respectively. If {w1, w2} is a basis of 2-dimensional lattice L over Z, 
then we write L = [w1, w2]. The fundamental parallelogram for 
L = [w1, w2] is the set consisting of all points t1w1 + t2w2, where 
0 ≤ ti ≤ 1. 

Similarly, if {w1, w2, w3, w4} is a basis of 4-dimensional lattice L 
over Z, then we write L = [w1, w2, w3, w4]. The fundamental 
parallelogram for L = [w1, w2, w3, w4] is the set consisting of all 
points t1w1 + t2w2 + t3w3 + t4w4, where 0 ≤ ti ≤ 1. 

For a nonsupersingular elliptic curve E, its endomorphism ring 
End(E) has a complex multiplication [25], and the structure of that 
ring is },{][ ZZ ∈+= babwaw  [26], where w is the smallest 
norm in End(E). We can consider Z[w] as the lattice L=[1, w]. 

We introduce an important property of an endomorphism ring 
of Jacobian. According to Tate [27], the characteristic polynomial 
of the Frobenius map ϕ has no double roots if and only if 

)()( ϕQQ ≅⊗XEnd and .2]:)([ gXEnd =⊗ QQ Thus, the 
endomorphism ring of a hyperelliptic curve with genus 2 is 4-
dimensional if the characteristic polynomial of the Frobenius map 
ϕ  has no double roots.  

Lemma 1. If the characteristic polynomial of Frobenius map 
ϕ for X1 in Example 2 has no double roots, then ][ρϕ Z∈  and 
End(X1) contain the isomorphic image  

.},,,{][

of},,,{][
32

55

32

55
ZZ

ZZ
∈+++=

∈+++=

dcbadcba

dcbadcba

ζζζζ

ρρρρ
 

Proof. By J. Tate [27], End(X1) is 4-dimensional. We will show 
that End(X1) contains a 4-dimensional lattice. Let 

}.{)( 3
3

2
25105 55

QQ ∈+++= iuuuuu ζζζζ  It is well known 
that the set of all algebraic integers in )( 5ζQ  is  

}{][ 3
3

2
25105 55

ZZ ∈+++= iccccc ζζζζ [28]. 
The endomorphism )( 1XEnd∈ρ can be considered as 5ζ  

since 5 Iρ = . Thus, the ring ][ρZ  is isomorphic to the ring 
5[ ]ζZ  by .5ζρ  Since ϕ satisfies the characteristic 

polynomial ϕ,)( 2
1

2
2

3
1

4 pptatatattf ++++=  is represented 
by an algebraic integer, that is, ].[ρϕ Z∈   

It is obvious that ][ρZ  is a subring of End(X1).            

Lemma 2. If the characteristic polynomial of Frobenius map 
ϕ  for X2 in Example 3 has no double roots, then ][γϕ Z∈  and 
End(X2) contain the isomorphic image   

.},,,{][

of},,,{][
32

88

32

88
ZZ

ZZ
∈+++=

∈+++=

dcbadcba

dcbadcba

ζζζζ

γγγγ
 

Proof. Similar to Lemma 1.                            
Ring ][ 5ζZ is the 4-dimensional lattice ];,,,1[ 3

5
2
55 ζζζ=L its 

fundamental parallelogram has 16 points, 32 edges, 24 faces, and 8 
cubes as shown in Fig. 1. Similarly, ][ 8ζZ  is the 4-dimensional  



620   Tae Jun Park et al. ETRI Journal, Volume 27, Number 5, October 2005 

 

Fig. 1. Fundamental parallelogram of ].[ 5ζZ  
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Fig. 2. Fundamental parallelogram of ].[ 8ζZ  
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lattice ],,,1[ 3

8
2
88 ζζζ=L as shown in Fig. 2.  

In [12], the norms of vectors in 4-dimensional lattices are 
defined as follows. In ],[ 5ζZ for ,3

5
2
55 ζζζ dcbaz +++=  

.
2222)( 22222

dacdbdbcacab
dcbazN

−−−−−−
+++=

         (4) 

In ][ 8ζZ  for ,3
8

2
88 ζζζ dcbaz +++=  

.2222)( 22222 dcbazN +++=             (5) 

III. New Frobenius Method for Hyperelliptic Curves 

1. Fifth Roots of Unity 

In this section, we show that when p≡1 mod 5, the coefficients 
of a Frobenius expansion can be represented using the efficient 
endomorphism ρ  that is considered as the 5th root of unity 

.
22

55
4

51
5

+
+

+−
= iζ We begin by proving the following  

division method. 

Lemma 3. Let p≡1 mod 5 and ].[ρs Z∈ There exist ][, ρtr Z∈  
such  that rts += ϕ  and .2/10)( prN ≤  

Proof. By Lemma 1, ϕ  can be written as  
32 ρρρ dcba +++ for .,,, Z∈dcba  Note that  

.2)( pN =ϕ Let 3
3

2
210 ρρρ sssss +++= for .Z∈is  

Then, there exists a quotient  

)(3
3

2
210 Q∈+++= ixxxxxx ρρρ  

such that .xs ⋅= ϕ  
If we represent s as (s0, s1, s2, s3), we get  

,

3

2

1

0

3

2

1

0





















=





















x
x
x

x

A

s
s
s

s

 

where .





















−−−

−−−

+−−−

+−+−−

=

bacbdcd
bcadbc
dbcdab
cbdcda

A  

To find a quotient in ][ρZ , set 0 1 2 3( , , , ),t x x x x=          
where z   means the nearest integer to z. Then, put 

0 0

1 1

2 2

3 3

.

s x
s x

r s t A
s x
s x

ϕ

   
   
   = − = −
   
      
   

 
 
 
 

 

The largest norm between points in the fundamental 
parallelogram in ][ρZ  is .10  Thus, the largest norm 
between points in the fundamental parallelogram in ][ρϕZ  is 
less than or equal to p10  since )()( xNpxN =⋅ϕ  [12], 
as shown in Fig. 3. Thus, any lattice point of ][ρZ  has its 
nearest point of ][ρϕZ  with the distance less than or equal to 

.2/10 p                                            

The following theorem shows that the expansion using our 
division method given in Lemma 3 is not periodic, and its length is 
finite. 

Theorem 1. Let p≡1 mod 5 and ].[ρZ∈s  Then, we can 
write 

,
0

∑
=

=
l

i

i
irs ϕ                    (6) 
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Fig. 3. Lattice points of ][ρZ in the fundamental parallelogram
of lattice ][ρϕZ . 
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where ,210)(],[ prNr ii ≤∈ ρZ and  .sNl p )(log2≤  

Proof. Let s0 = s. By Lemma 3, .010 rss += ϕ Recursively, 
.1 jjj rss += + ϕ  Then, 
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with 2/10)( prN i ≤  for .0 ji ≤≤ Using the triangular 

inequality, we get 
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Now, if   ,1)(log2 0 −≥ sNj p  then  

.1
)(
1

0 ≤+j
p

sN
                   (9) 

We see 
 

2
10

12
101

p
p

p
<

−
⋅+              (10) 

 
since p≡1 mod 5 is prime, that is, p ≥11. By (8), (9) and (10), we 

get .2/10)( 1 psN j <+  Setting sj+1=rj+1 in (7), we get the 

expansion (6) with l at most  .)(log2 sNp                 

For example, consider p = 11 and the curve X1: y 2 = x 5 + 1. Its 
Frobenius endomorphism can be written 
as .4221 32 ρρρϕ −−−−=  The number of lattice points of 

][ρZ  in the fundamental parallelogram of ][ρϕZ  is 176. But 
the actual number of possible remainders r in Lemma 3 is 112 = 
121. We can expand 37 as follows: 

 

.2)2(

)3()1(37
232

23232

ρρϕρρρ

ϕρρρϕρρ

+−−++++

+++−−=
 

2. Eighth Roots of Unity 

In this section, we show that when p≡1 mod 8, the coefficients 
of a Frobenius expansion can be represented using an efficient 
endomorphism γ  that is considered as the 8th root of unity 

.
2

1
8

i+
=ζ  

 
Lemma 4. Let p≡1 mod 8 and ].[γZ∈s  There exist 

][, γZ∈tr  such that rts += ϕ  and .2)( prN ≤  
 
Proof. By Lemma 2, ϕ can be written as 32 γγγ dcba +++  

for Z∈dcba ,,, . Let 3
3

2
210 γγγ sssss +++=  for .Z∈is  

Then, there exists a quotient  

)(3
3

2
210 Q∈+++= ixxxxxx γγγ , 

where .xs ⋅= ϕ If we represent s as ),,,,( 3210 ssss  we get  
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To find a quotient in ],[γZ  set 0 1 2 3( , , , ).t x x x x=          

Then, put 
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0 0
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s x
s x

r s t B
s x
s x

ϕ

   
   
   = − = −
   
      
   

 
 
 
 

 

The proof of prN 2)( =  is similar to that of Lemma 3, as can 
be seen in Fig. 4.                                       
 

 

Fig. 4. Lattice points of ][γZ  in the fundamental parallelogram
of lattice ].[γϕZ  
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Theorem 2 shows that the expansion using our division method 
given in Lemma 4 is not periodic, and its length is finite. 

 
Theorem 2. Let p≡1 mod 8 and ].[γZ∈s  Then, we can 

write 

,
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i
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i
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=

=                   (11) 

where ].[γZ∈ir ,2)( prN i ≤  and  .)(log2 sNl p≤  

Proof. Let s0 = s. By Lemma 4, .010 rss += ϕ  Recursively, 
.1 jjj rss += + ϕ  Then, 
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i
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with prN i 2)( ≤  for .0 ji ≤≤ Using the triangular 
inequality, we get 
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Now, if   ,1)(log2 0 −≥ sNj p  then  
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 We see 

,2
1

21 p
p

p
<

−
⋅+               (15) 

since p≡1 mod 8 is prime, that is, p ≥ 17. By (13), (14) and (15), 
we get .2)( 1 psN j <+  Setting sj+1=rj+1 in (12), we get the 
expansion (11) with l at most  .)(log2 sNp               

For example, consider p = 17 and the curve X2:y2=x5+2x. Its 
Frobenius endomorphism can be written as 

.232 32 γγγϕ +−−=  The number of lattice points of ][γZ  in 
the fundamental parallelogram of ][γϕZ  is 368. But the actual 
number of possible remainders r in Lemma 4 is 172 = 289. We can 
expand 37 as follows: 

.22)221()22(37 32 γϕγγϕγ ++++++=  

IV. Scalar Multiplication Algorithms 

In this section, we present practical algorithms that perform 
scalar multiplication in hyperelliptic curves with genus 2 using our 
new expansion method. First, we explain a well-known algorithm 
that uses the Frobenius map over ,np

F that is, the hyperelliptic 
curve version of the Kobayashi-Morita-Kobayashi-Hoshino 
algorithm [29], [30], which we call hereafter algorithm KMKH. 
Then, we show how these algorithms can be adapted to use our 
new expansion method. 

The following algorithm is the hyperelliptic curve version of 
algorithm KMKH, and it consists of three steps. The first step is 
the Frobenius expansion step of m, which uses Lange’s expansion 
algorithm [12]. In the second step, the length of the expansion is 
reduced to n using )1,)( DDn =ϕ 1)and k is expanded to 

.1

0
in

i irk ϕ∑ −

=
=  The third step is a simultaneous scalar 

multiplication 111100 −−+++ nn DrDrDr  for ( )i
iD Dϕ= .2) 

From now on, subscripts are used to denote array indices, and 
superscripts with parentheses are used to denote bit positions, 
                                                               

1) Note that it is possible to first reduce m modulo )1/()1( −− ϕϕ n  and then apply the 

first step, which produces an expansion with smaller coefficients [31], [32]. In [12], this 
approach is taken. However, we don’t use this approach since it does not seem to bring a 
significant speed-up that can justify the additional complexity. It reduces the number of bits in 
each coefficient at most by two, but its implementation is more complicated than the above 
implementation of Step 2, i.e., simple integer additions. 

2) For curves with very small characteristic, the cardinality of the set of possible ri’s is very 
small. Then, the third step can be implemented with no doublings: 

,)))((( 0121 DrDrDrDr nn ++++ −−ϕϕϕ  where D, 2D, 3D,…, rD are precomputed 
for ).max( irr = Note that our new expansion method is not applied to this case. 
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where the least significant bit is regarded as the 0th bit. 

Algorithm 1. 

Input: integer m, divisor D 
Output: divisor Q = mD 

Step 1: Frobenius expansion of m [12]. 

.0,0,0,,0 3210 ←←←←← cccmci  

while (c0 ≠ 0 or c1 ≠ 0 or c2 ≠ 0 or c3 ≠ 0) do 
2 2

0 0 0 1 1

1 2 2 2 3 1 3

/ , , ,
, , ,

id c p u c dp c c a dp
c c a d c c a d c d

← ← − ← −
← − ← − ← −

   

where a1, a2 are from the characteristic polynomial 

.1
.2

1
2

2
3

1
4

+←
++++

ii
ppaaa ϕϕϕϕ  

od. 

Step 2: Optimization of the Frobenius expansion using 
DDn =)(ϕ [29], [30]. 

ninininiii uuuuur 432 ++++ ++++← for .0 ni <≤ 3) 

Step 3: Scalar multiplication. 

.
.0for)(

∞←

<≤←

Q
niDD i

i ϕ
 

for   1logmax 2
1
0 −← −

= i
n
i rj  to 0 do 

    Q ← 2Q. 
    for i = 0 to n - 1 do 

      if (ri > 0 and 1)( =j
ir ) then Q ← Q + Di. 

      else if (ri < 0 and (-ri)( j)=1) then Q ← Q – Di. 
    od. 
od. 

The above algorithm can be modified to use the endomorphism 
ρ  as well as the Frobenius map as follows. 

 
Algorithm 2 

Input: integer m, divisor D 
Output: divisor Q = mD 

Step 1: Frobenius expansion of m  
i ← 0, s0 ← m, s1 ← 0, s2 ← 0, s3 ← 0. 
while (s0 ≠ 0 or s1 ≠ 0 or s2 ≠ 0 or s3 ≠ 0) do 

                                                               
3) According to Lemma 8.2 in [12], the expansion length can be slightly greater than 4n. 

,00 0 0 0 0 0

,11 1 1 1 1 11

2 2 ,2 2 2 2 2

3 3 3 3 3 3,3

, ,

i

i

i

i

ux s s x s x
ux s s x s x

A A
x s u s x s x
x s s x s xu

−

            
            
            ← ← − ←            
                                    

   
   
   
   

 

od.
.1+← ii
 

Step 2: Optimization of the Frobenius expansion using 
.)( DDn =ϕ  

ri , j←ui ,j+ui+n ,j+ui+2n ,j+ ui+3n ,j+ ui+4n ,j 
for 0≤ i < n, 0≤ j≤ 3.4) 

Step 3: Scalar multiplication 
)(DD i

i ϕ←  for  0≤i<n. 
.∞←Q  

for   1logmax 2, −← ijji rk  to 0 do 
.2QQ ←  

   for i = 0 to n – 1 do 
     for j = 0 to 3 do 
       if (rij > 0 and 1)( =k

ijr ) then ).( i
j DQQ ρ+←  

       else if (rij < 0 and 1)( )( =− k
ijr )  

then ).( i
j DQQ ρ−←  

     od. 
   od. 
od. 

Note that this algorithm can be modified easily to a version that 
uses endomorphism γ  instead of ρ : we only have to change 
matrix A into B in Step 1, and change ρ  into γ  in Step 3. 

 

Table 1. Comparison of the number of divisor operations. 

 Algorithm 1 Algorithm 2 
Expansion length  
(after optimization) 

n n 

Number of coefficients n 4n 

Number of bits in each coefficient
 

p

rii

2

2

log2

logmax

≈
  

2/)(log

logmax

2

2,

p

rijji

≈

Average number of divisor 
additionsa) 

pn 2log≈  pn 2log≈  

Number of divisor doublings p2log2≈  2/)(log2 p≈  

Number of Frobenius maps n-1 n-1 

Number of ρ  or γ  mapsb) 0 3n 

 a) (the total number of bits) / 2 
b) The costs for these operations are negligible. 

                                                               
4) According to Theorem 1, the expansion length can be slightly greater than 4n. 
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  Now, we compare the number of divisor operations in Algorithm 
2 with that of Algorithm 1, as shown in Table 1. Note that in 
Algorithm 2, the number of coefficients is quadrupled, but the size of 
each coefficient is reduced to a fourth root order. Hence, the number 
of divisor additions is approximately the same. However, the 
number of divisor doublings is reduced to a quarter, which is the 
main improvement of our algorithm. Although Algorithm 2 needs 
3n computations of ρ  or γ  maps, the required time for these 
operations is negligible. Finally, we remark that the required 
memory to store the expansion coefficients (ri or rij) and divisors Di 
is approximately the same for the two algorithms. 

V. Performance Analysis 

In this section, we compare the performance of the scalar 
multiplication algorithms described in the previous section. For 
the underlying fields, we consider only finite fields np

F  that 
have irreducible binomials ω−= nxxf )(  as their field 
polynomials. The fields and curves that we have implemented 
are shown in Table 2. We can calculate the orders of some 
Jacobian groups and the characteristic polynomials of the 
Frobenius maps ϕ  with the help of the program made by 
Lange [33], which uses MAGMA [34]. 

Table 3 shows the timings for scalar multiplications on a 2.66 
GHz Pentium 4 CPU with 512 MB RAM using Visual C++ 6.0 
compiler. For reference, we have also shown the results for the 
non-adjacent form scalar multiplication algorithm. As shown in 
Table 3, our method improves the throughput by 15.6 to 28.3 %. 
According to our experiments, the time required for an expansion 
is equivalent to only a few divisor additions. 

We remark that our comparison could be done on more 
optimized versions of Algorithms 1 and 2, that is, we could use 
non-adjacent forms for each coefficient ri or rij, a Joint Sparse 
Form [35], and an on-line precomputation method such as Lim 
and Hwang's algorithm [36]. Note that in these cases the gains are  
 

Table 2. Implemented fields and curves. 

curve p n 
Irreducible 
binomial 

Curve 
equation 

Order 
(bits) 

Endo-
morphism

1 
2 
3 

1021 
8191 
8161 

17 
13 
17 

f(x)=x17–2 
f(x)=x13–2 
f(x)=x17–2 

y2=x5+2 
y2=x5+1 
y2=x5+1 

267 
268 
416 

ρ 
ρ 
ρ 

4 
5 

457 
761 

19 
19 

f(x)=x19–2 
f(x)=x19–2 

y2=x5+5x 
y2=x5+2x 

318 
336 

γ  
γ  

 

Table 3. Timings for scalar multiplications (ms). 

curve NAF Algorithm 1 Algorithm 2 Gaina) 

1 
2 
3 

382.81 
250.00 
722.34 

127.19 
86.40 

194.38 

109.06 
67.35 

168.12 

16.6% 
28.3% 
15.6% 

4 
5 

543.91 
575.79 

149.37 
157.96 

120.63 
130.79 

23.8% 
20.8% 

 a) Throughput increase of Algorithm 2 over Algorithm 1 

expected to be greater than those of Table 3, since these 
optimizations reduce only the number of divisor additions 
while leaving the number of doublings unchanged (that is, the 
portions of doublings in the overall computations become 
greater). However, our method does not seem to give much 
improvement in the divisor-known-in-advance case, since one 
can reduce the required number of on-line doublings by pre-
computing some of the doublings in the off-line pre-
computation stage. 

VI. Conclusions  

We have presented efficient scalar multiplication algorithms 
using a new Frobenius expansion method for special hyperelliptic 
curves with GLV endomorphisms. By replacing some divisor 
doublings with other efficiently computable maps, our method 
improves the speed of scalar multiplication by 15.6 to 28.3 %, 
when the algorithms are implemented over np

F , where p and 
n are prime. 

Note that there exist many curves with GLV endomorphisms 
that are suitable for cryptographic use, that is, curves that have a 
large prime factor in their group orders. Some example curves are 
given in Appendix A. 

Finally, we make a short remark about the security of using 
extension fields np

F for HECC, where p and n are prime. 
For ECC, the security implications of the Weil-descent [37] on 
these types of curves are not yet clear [38]. Similarly, there is 
no known attack that significantly reduces the time required to 
compute hyperelliptic curve discrete logarithms on these 
curves. 

Appendix A. Some Suitable Curves 

There exist many curves that are suitable for cryptographic use, 
that is, those that have a large prime factor in their Jacobian group 
orders. We give some of them here. 
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Table A1. Curves y2 = x5 + a over .np
F  

p a n ,J  the characteristic polynomial of the Frobenius map ϕ  

211 4 13 2699876120698661907132756440968534354370062556956720944119105=5·11·521·941·14561·1560131·44075934928
67288 828467654997293793808617561, t4 + 31t3 + 661t2 + 6541t + 44521 

13 85593957535217708575355388427219650126937503209374273784942000=24·53·31·911·151542009020958373597527
33335 79187176922515194387137031, t4 + 16t3 + 46t2 + 3856t + 58081               

1 

17 974045955869187927807164285439963740160040891527320569854349910401810022262782000=24·53·31·104891·23
8886041·626987321804777160720652188364657947099117050861939624179149131, t4 + 16t3 + 46t2 + 3856t + 58081

3 17 974045955869187927826338276197753342825169792078312871639095777211324211562093555=34·5·151·15927494
986005852797421932404509089082252796861717159212478060292884052188081, t4 + 11t3 + 411t2 + 2651t + 58081 

241 

5 17 974045955869187927838499773361318117484598828710900025003171798786323692389965155=5·101·131·1472369
3687086205545136418613276670206100806117616204746476786316776112045801, t4 + 31t3 + 571t2 + 7471t + 58081

251 1 13 246329688982665693963347758402288682267639125363099767720782000=24·53·31·397305949972041441876367352
2617559391413534280049996253561, t4 - 4t3 + 6t2 - 1004t + 63001 

431 11 17 373445461206796545002218752480945258270913877901160943722310882379930815264665357070460455=5·31·129
1·1866247526082789260649252904629795648639033896710031951836840070862451289396393678671, 

t4 + 31t3 + 951t2 +13361t + 185761 

13 1803948189292645871173780038301237976421347980672645623956400558682880=28·5·151·13820431·67532924343
3735384902354215892179339931357777482000406191, t4 - 44t3 + 1086t2 - 20284t + 212521 

1 

17 3679861414696803421591661765140668006575135455415703872670275103982791953339244070337934080=28·5·15
1·19039018081005812404758183801431436292296851487043169871017565728387789493684002847361, 

t4 - 44t3 + 1086t2 -20284t + 212521 

461 

2 13 1803948189292645859803440202551316050759330926994401105111282187479081=131·221261·62236891566201715
20703 2453315602303630130673522020300128823791, t4 + 19t3 - 39t2 +8759t + 212521 

1 13 9292205273328120088035467151392526652099779880241255719652455505781680=24·5·3511·3308247391529521535
1877909254459294546068712191118113499189887161, t4 + 76t3 + 2406t2 +37316t + 241081 

491 

7 17 31388512296654191827836489891634642465288469320272196732182775697565323967887270074386525041=11·31·
691·133210453194419205570729190520918904835477799272049079841713423520527112170670540270111,  

t4 - 11t3 - 39t2 - 5401t + 241081 

11 1579669838163908876341912902720336379106066092796085557742887655680=28·5·112·71·14365231766564472234
2232505558172831588477957746122900941291, t4 - 44t3 + 2206t2 - 44924t + 1042441 

1 

13 1716600735466713513867139209916276849110527017403516911968872038175647606964480=28·5·11·71·131·76599
91·1711231380503501251804673458819178976986466853506572546408345741, t4 - 44t3 + 2206t2 - 44924t + 1042441

1021 

2 17 20271002674999194118761025569839996834640743914468379951438765758428171667144966943506813284727607
04661=10512·1361·153511·60898931·1442322915765730279942685292271946039600618408802287616058353959614
37394493939561, t4 + 59t3 + 1861t2 + 60239t + 1042441 

1 17 99833166696352446577561984053748450261868061611134014960944050495539462488663618611165042203898569
13302097293234645111931345157792000=28·53·11·191·148490550179010659474003427019497337966843261558683
387316968185530014669337017519352637199851110437192142094437688081745766081, t4 + 76t3 + 9766t2 +620236t
+ 66601921 

8161 

3 17 99833166696352446577561984053748305962314490920011403434029575461229331117442555880784978107134729
66066983316928234413691161415075305=34·5·31·41·131·56611·449311·5820430396226384050451704390848769203
877053880818694457993965876894154517724217806357553429543162006041724342599861, t4 + 101t3 + 6621t2 +
824261t + 66601921 

8191 1 13 55816175338656753035664248107951544717900586647129332269770911920302122880203251744993147250256820
2000=24·53·71·491·1171·9491·1941941·37092434480076333343013764866950699296342581291819214596488512514
7273033693786541, t4 + 316t3 + 40846t2 + 2588356t + 67092481 
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Table A2. Curves y2 = x5 + ax over .np
F  

p a n ,J  the characteristic polynomial of the Frobenius map ϕ  

13 35583932904202122404699549210191429703958828849165564347732194=2·28097·633233670929318475365689383

389533218919436752129507854001, t4 + 8t3 + 32t2 + 1864t + 54289 

233 3 

17 309101643971325034558249053383976545806788006378631831042669370159458854231108994=2·137·28097·57147

9889·7025704005056055050795698628104176460612, t4 + 8t3 + 32t2 + 1864t + 54289 

257 9 17 8664154603710852581745538101767290958726499060721225994384649715431091073714140036=22·172·977·767138

5290497048536535416749394632745823932330027683426760694693726550695153, t4 + 386t2+ 66049 

449 3 19 61004371637573399777978803270713287432992308363094379613429808026076282051691525900576739728874380

914=2·99017·6308153·2265185929·21558330468296002917728602672815324504328883422912391492046751440047

846150296433, t4 - 8t 3 + 32t2 - 3592t + 201601 

457 5 19 11934812559723912735221118577836169890712454139151888995310929237339099939489178174215041363979034

4594=2·193·601·514462621008332948333999404181121700909212372261769632448118819124391124442387824015

890672884529, t4 + 48t3 + 1152t2 + 21936t + 208849 

761 2 19 31089730491797053629629165686526223258322292694627170645161548718533794460473210096035833024410924

136341147236=22·17·457·8537·117188923026787372088742832044880615221782289931614791737313775305785054

987875986885295547086928474153, t4 + 1394t2 + 579121 

1009 2 17 13561247809445593140256306312966255206980587509651917687506517849205442267025930564779315280065669

08390=2·3·5·13·2609·10099·43793·123863·24329674687898572760228883675033427981944247396716903575491532

948618622175312516429, t4 - 574t2 + 1018081 
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