• 제목/요약/키워드: Frictional forces

검색결과 199건 처리시간 0.03초

피스톤의 점성 마찰력을 고려한 소형 왕복동 압축기의 동적 해석 (Dynamic Analysis of the Small Reciprocating Compressors Considering Viscous Frictional Force of a Piston)

  • 김태종
    • 한국소음진동공학회논문집
    • /
    • 제12권11호
    • /
    • pp.904-913
    • /
    • 2002
  • In this study, a dynamic analysis of the reciprocating compression mechanism considering viscous friction force of a piston used in small refrigeration compressors is performed. The length of cylinder in this class of compressors is shortening to diminish the frictional losses of the piston-cylinder system. So, the contacting length between piston and cylinder liner is in variable with the rotating crank angle around the BDC of the reciprocating piston. In the problem formulation of the compression mechanism dynamics, the change in bearing length of the piston and all corresponding viscous forces and moments are considered in order to determine the trajectories of piston and crankshaft. The piston orbits for viscous friction model and Coulomb friction model were used to compare the effect of the friction forces of piston on the dynamic trajectories of piston. To investigate the effect of friction force acting on the piston for the dynamic characteristics of crankshaft, comparison of the crankshaft loci is given in both viscous model and Coulomb model. Results show that the viscous friction force of piston must be considered in calculating for the accurate dynamic characteristics of the reciprocating compression mechanism.

세라믹 브라켓의 종류 및 브라켓 슬롯과 와이어 각도에 따른 마찰 저항 차이 (Frictional resistance of different ceramic brackets and their relationship to the second order angulation between bracket slot and wire)

  • 최윤정;박영철
    • 대한치과교정학회지
    • /
    • 제36권3호
    • /
    • pp.207-217
    • /
    • 2006
  • 사회 문화적 발달과 함께 심미적 요구가 증가되면서 교정 환자 수의 증가와 함께 교정 치료 중의 심미성에 대한 요구도 늘어나고 있다. 치료 중 심미성을 증진시키기 위한 목적으로 세라믹 브라켓이 개발되어 널리 사용되고 있으나 세라믹 자체의 취성(brittleness), 대합치의 마모뿐만 아니라, 임상적으로 높은 마찰 저항이 그 문제점으로 지적되고 있다. 본 연구는 세라믹 브라켓의 마찰 저항을 알아보고 그 개선방안을 찾는데 지침이 되고자 하는 목적으로 시행하였다. 연구 재료로는 마찰 저항을 줄이기 위해 금속 슬롯이 삽입된 다결정 세라믹 브라켓과 금속 슬롯이 삽우되지 않은 단결정 세라믹 브라켓과 금속 브라켓을 이용하였으며, $.019{\times}.025$ 스테인리스 와이어를 브라켓 슬롯에 대해 $0^{\circ},\;10^{\circ}$의 각도를 부여하여 만능시험기상에서 이동시켜 그때의 정적, 동적 마찰력을 측정하였다. 연구 결과, 전체적인 평균 마찰력은 금속 브라켓, 금속 슬롯이 삽입된 다결정 세라믹 브라켓, 단결정 세라믹 브라켓 순으로 증가하였다. 브라켓 슬롯과 와이어 사이의 각도가 $0^{\circ}$일 때가 $10^{\circ}$일 때에 비해서 낮은 마찰 저항을 보였으며, 브라켓 슬롯과 와이어 사이의 각도가 $10^{\circ}$일 때 단결정 세라믹 브라켓의 동적, 정적 마찰 저항은 금속 브라켓이나 금속 슬롯이 삽입된 다결정 세라믹 브라켓에 비해 유의성 있게 크게 나타났다 (p<0.05). 본 연구를 통해서 금속 브라켓에 비해 세라믹 브라켓, 특히 금속 슬롯이 삽입되지 않은 단결정 세라믹 브라켓의 마찰 저항이 높은 것을 확인할 수 있었으며, 브라켓 슬롯과 와이어간의 각도가 증가하면 마찰 저항도 커지는 것을 확인할 수 있었다. 따라서 마찰력을 줄이기 위한 세라믹 브라켓의 개발과 함께 교정 치료 시 과도한 치관 경사를 막음으로써 마찰 저항을 줄이고 심미성을 유지하면서 치료의 효율을 높이도록 해야할 것이다.

부착력과 마찰력이 개재된 마이크로 입자 충돌 운동 (Microparticle Impact Motion with Adhesion and Frictional Forces)

  • 한인환
    • 대한기계학회논문집A
    • /
    • 제26권8호
    • /
    • pp.1698-1708
    • /
    • 2002
  • The main topic covered in this paper is that of the impact process, that is, where two bodies come into contact and rebound or stick together. This paper presents how to determine the rebound velocities of a microparticle that approaches a surface with arbitrary initial velocities and relate the impact process to the physical properties of the materials and to the adhesion force. Actual adhesion forces demonstrate a significant amount of energy dissipation in the form of hysteresis, and act generally in a normal to the contact surfaces. Microparticles must also contend with forces tangent to the contact surfaces, namely Coulomb dry friction. The developed model has an algebraic form based on the principle of impulse and momentum and hypothesis of energy dissipation. Finally, several analyses are carried out in order to estimate impact parameters and the developed analytical model is validated using experimental results.

Small Dam의 斜面安定 解析 (The Analysis of the Slope Stability for the Small Dam)

  • 최기봉;배우석
    • 한국안전학회지
    • /
    • 제19권2호
    • /
    • pp.88-92
    • /
    • 2004
  • The paper decribes a procedure for the evaluation of the effect of seepage force on stability of slopes. The stability of an embankment impounding a water reservoir is highly depend upon the location of seepage line with the embankment. To evaluate the accurate safety factor of an embankment, it is important to illustrate the seepage phenomenon. Of particular interest is the stability following a rapid change of reservoir level. Seepage forces in embankments are easily determined interest is the stability following a rapid change of resrvoir level. Seepage forces in embankments are easily detemined if frictional forces are expressed in relation to hydraulic gradient I. If a piezometer is inserted into a body of embankment, the level to which fee water rises is a measure of the energy at that point.

증발 코팅법으로 증착된 광유와 실리콘 오일 윤활제의 마찰 저감 특성 (Friction Reduction Properties of Evaporation Coated Petroleum and Silicone Oil Lubricants)

  • 유신성;김대은
    • 한국정밀공학회지
    • /
    • 제30권8호
    • /
    • pp.864-869
    • /
    • 2013
  • As the size of mechanical components decreases, capillary forces and surface tension become increasingly significant. A major problem in maintaining high reliability of these small components is that of large frictional forces due to capillary action and surface tension. Unlike the situation with macro-scale systems, liquid lubrication cannot be used to reduce friction of micro-scale components because of the excessive capillary and drag forces. In this work, the feasibility of using evaporation to coat a thin film of organic lubricant on a solid surface was investigated with the aim of reducing friction. Petroleum and silicone oils were used as lubricants to coat a silicon substrate. It was found that friction could be significantly reduced and, furthermore, that the effectiveness of this method was strongly dependent on the coating conditions.

Sensitivity of resistance forces to localized geometrical imperfections in movement of drill strings in inclined bore-holes

  • Gulyayev, V.I.;Khudoliy, S.N.;Andrusenko, E.N.
    • Interaction and multiscale mechanics
    • /
    • 제4권1호
    • /
    • pp.1-16
    • /
    • 2011
  • The inverse problem about the theoretical analysis of a drill string bending in a channel of an inclined bore-hole with localized geometrical imperfections is studied. The system of ordinary differential equations is first derived based on the theory of curvilinear flexible elastic rods. One can then use these equations to investigate the quasi-static effects of the drill string bending that may occur in the process of raising, lowering and rotation of the string inside the bore-hole. The method for numerical solution of the constructed equations is described. With the proposed method, the phenomenon of the drill column movement, its contact interaction with the bore-hole surface, and the frictional seizure can be simulated for different combinations of velocities, directions of rotation and axial motion of the string. Geometrical imperfections in the shape of localized smoothed breaks of the bore-hole axis line are considered. Some numerical examples are presented to illustrate the applicability of the method proposed.

구형 및 평면 원자현미경 탐침에 대한 2차원 소재의 마찰 특성 (Frictional Properties of Two-dimensional Materials against Spherical and Flat AFM Tips)

  • ;정구현
    • Tribology and Lubricants
    • /
    • 제35권4호
    • /
    • pp.199-205
    • /
    • 2019
  • Two-dimensional materials such as graphene, h-BN, and $MoS_2$ have attracted increased interest as solid lubricant and protective coating layer for nanoscale devices owing to their superior mechanical properties and low friction characteristics. In this work, the frictional properties of single-layer graphene, h-BN, and $MoS_2$ are experimentally investigated under various normal forces using atomic force microscope (AFM) tips with a spherical and flat end, with the aim to gain a better understanding of frictional behaviors. The nonlinear relationship between friction and normal force friction was clearly observed for single-layer graphene, h-BN, $MoS_2$ specimens slid against the spherical and flat AFM tips. The results also indicate that single-layer graphene, h-BN, $MoS_2$ exhibit low frictional properties (e.g., friction coefficient below 0.1 under 70~100 nN normal force). In particular, graphene is found to be superior to h-BN and $MoS_2$ in terms of frictional properties. However, the friction of single-layer graphene, h-BN, $MoS_2$ against the flat tip is larger than that against the spherical tip, which may be attributed to the relatively large adhesion. Furthermore, it is shown that the fluctuation of friction is more significant for the flat tip than the spherical tip. The resutls of this study may be helpful to elucidate the feasibility of using two-dimensional materials as solid lubricant and protective coating layer for nanoscale devices.

벌칙방법에 의한 마찰 접촉문제의 강소성 유한요소 모델링 (Rigid-Plastic FE Modeling of Frictional Contact Problems based on a Penalty Method)

  • 장동환;황병복
    • 소성∙가공
    • /
    • 제12권1호
    • /
    • pp.34-42
    • /
    • 2003
  • This paper presents a rigid-plastic finite element method to handle the frictional contact problem between two deformable bodies experiencing large deformation. The variational formulation combined with incremental quasi-static model is employed for treating the contact boundary condition. The frictional behavior of the model obeys Coulomb's law of friction. The proposed contact algorithms are classified into two categories, one for searching contacting nodes and the other for calculating contact forces at the contact surface. A slave node and master contact segment are defined using the geometric condition of finite elements on the contact interface. The penalty parameter is used to limit the penetration between contacting bodies, and the finite elements are coupled with contact boundary elements.us gates and cavity thicknesses. Through this study we have observed that the jetting is related to the die swell of material. This means that the jotting is strongly affected by the elastic flow property rather than the viscous flow property in viscoelastic characteristics of molten polymer. Different resins have different elastic properties, and elastic flow behavior depends on the shear rate of flow, i.e. injection speed. Large die swell would eliminate jetting however, the retardation of die swell would stimulate jetting. In the point of mole design, reducing the thickness ratio of cavity to gate can reduce or eliminate jetting regardless of amount of elasticity of polymer melt.

Laboratory considerations about frictional force on pipe surface when slurry machine is used

  • Khazaei Saeid;Shimada Hideki;Kawai Takashi;Yotsumoto Jyunichi;Sato Iwao;Matsui Kikuo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 2003년도 Proceedings of the international symposium on the fusion technology
    • /
    • pp.214-220
    • /
    • 2003
  • Pipe jacking is a name for a method to excavate a tunnel by pushing pipe into the ground from an especial pit. Size of tunnels in this method is different from under 900mm (microtunneling) to more than 3,000mm. Method of excavation is also different from hand digging to use of any kind of tunnel boring machines such as slurry and earth pressure balance (EPB) machines. Slurry pipe jacking was firmly established as a special method for the nondisruptive construction of the underground tunnels in urban area. During the pipe jacking and microtunneling process, the jacking load is an important parameter, controlling the pipe wall thickness, need to and location of intermediate jacking station, selection of jacking frame and lubrication requirements. The main component of the jacking load is due to frictional resistance. In this paper the skin friction between pipe surface and surrounding condition also lubricant quality based on a few fundamental tests, were considered. During this study unconfined compressive strength test, dynamic friction measurement test and direct shear box test were raised for one of the largest diameter slurry pipe jacking project in Fujisawa city in Japan. It could be concluded that in slurry pipe jacking, prediction of frictional forces are mainly dependent on successful lubrication, its quality and lubricant strength parameters. Conclusions from this study can be used for the same experiences.

  • PDF

마찰받침이 있는 지진격리교량의 최적설계 (Optimal Design for Seismically Isolated Bridges with Frictional Bearings)

  • 이계희;유상배;하동호
    • 대한토목학회논문집
    • /
    • 제30권5A호
    • /
    • pp.399-406
    • /
    • 2010
  • 본 논문에서는 내진설계되지 않은 교량의 내진보강에 사용될 수 있는 지진격리장치의 하나인 마찰받침의 설계최적화에 대하여 연구하였다. 강상형교와 콘크리트교에 대하여 El Centro지진파와 인공지진파를 적용하여 마찰받침을 가진 교량구조물의 비선형동적해석을 수행하고 유전자알고리즘을 사용하여 구조물의 응답을 최적화하였다. 이 때 마찰받침의 전단력과 변위를 동시에 고려할 수 있도록 목적함수를 작성하고 전단력과 변위의 가중치를 변화시키면서 최적화를 수행하였다. 그 결과 상대적으로 경량인 강교에서는 전단력에, 상대적으로 중량인 큰 콘크리트교에서는 변위에 큰 가중치를 주는 경우 최적의 응답을 얻을 수 있었다.