• 제목/요약/키워드: Friction sensitivity

검색결과 133건 처리시간 0.025초

Reliability-based Optimization for Rock Slopes

  • 이명재
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1998년도 터널.암반역학위원회 박사학위 논문집
    • /
    • pp.3-34
    • /
    • 1998
  • The stability condition of rock slopes is greatly affected by the geometry and strength parameters of discontinuities in the rock masses. Rock slopes Involving movement of rock blocks on discontinuities are failed by one or combination of the three basic failure modes-plane, wedge, and toppling. In rock mechanics, practically all the parameters such as the joint set characteristics, the rock strength properties, and the loading conditions are always subject to a degree of uncertainty. Therefore, a reasonable assessment of the rock slope stability has to include the excavation of the multi-failure modes, the consideration of uncertainties of discontinuity characteristics, and the decision on stabilization measures with favorable cost conditions. This study was performed to provide a new numerical model of the deterministic analysis, reliability analysis, and reliability-based optimization for rock slope stability. The sensitivity analysis was carried out to verify proposed method and developed program; the parameters needed for sensitivity analysis are design variables, the variability of discontinuity properties (orientation and strength of discontinuities), the loading conditions, and rock slope geometry properties. The design variables to be optimized by the reliability-based optimization include the cutting angle, the support pressure, and the slope direction. The variability in orientations and friction angle of discontinuities, which can not be considered in the deterministic analysis, has a greatly influenced on the rock slope stability. The stability of rock slopes considering three basic failure modes is more influenced by the selection of slope direction than any other design variables. When either plane or wedge failure is dominant, the support system is more useful than the excavation as a stabilization method. However, the excavation method is more suitable when toppling failure is dominant. The case study shows that the developed reliability-based optimization model can reasonably assess the stability of rock slopes and reduce the construction cost.

  • PDF

태풍 기인 연안침식 예측의 불확실성 분석: 사례연구-일산해변 (Sensitivity Analysis in the Prediction of Coastal Erosion due to Storm Events: case study-Ilsan beach)

  • 손동휘;유제선;신현화
    • 한국연안방재학회지
    • /
    • 제6권3호
    • /
    • pp.111-120
    • /
    • 2019
  • In coastal morphological modelling, there are a number of input factors: wave height, water depth, sand particle size, bed friction coefficients, coastal structures and so forth. Measurements or estimates of these input data may include uncertainties due to errors by the measurement or hind-casting methods. Therefore, it is necessary to consider the uncertainty of each input data and the range of the uncertainty during the evaluation of numerical results. In this study, three uncertainty factors are considered with regard to the prediction of coastal erosion in Ilsan beach located in Ilsan-dong, Ulsan metropolitan city. Those are wave diffraction effect of XBeach model, wave input scenario and the specification of the coastal structure. For this purpose, the values of mean wave direction, significant wave height and the height of the submerged breakwater were adjusted respectively and the followed numerical results of morphological changes are analyzed. There were erosion dominant patterns as the wave direction is perpendicular to Ilsan beach, the higher significant wave height, and the lower height of the submerged breakwater. Furthermore, the rate of uncertainty impacts among mean wave direction, significant wave height and the height of the submerged breakwater are compared. In the study area, the uncertainty influence by the wave input scenario was the largest, followed by the height of the submerged breakwater and the mean wave direction.

Braden scale을 이용한 신경외과 중환자의 욕창 위험 요인 사정과 욕창 발생과의 관계 (The Relationship of Risk Assessment Using Braden Scale and Development of Pressure Sore in Neurologic Intensive Care Unit)

  • 이종경
    • 성인간호학회지
    • /
    • 제15권2호
    • /
    • pp.267-277
    • /
    • 2003
  • Purpose: The purpose of this study was to evaluate the applicability of braden scale to assess pressure ulcer risk patients and to identify additional risk factors of pressure sores in an neurologic intensive care unit. Method: The subjects of this study were 66 patients in neurologic intensive care units. Data was prospectively collected from Sep. to Dec., 2002. Data were analyzed by mean, percentage, t-test, chi-square, discriminant analysis using Spss pc+. Result: The results of this study were as follows: 1) There was a significant difference between scoring of braden scale and pressure ulcer development. The subscales that predicted pressure ulcer development using braden scale only were sensory perception, moisture, mobility, friction & shear. By using these subscales, sensitivity was 86.7%, and specificity was 61.1%, and total hit ratio was 72.7%. 2) Additional pressure ulcer risk factors which showed significance for discriminating two group were protein, albumin, gender, level of consciousness, pattern of bowel elimination. By using the combination of these additional risk factors in addition to the braden scale, total hit ratio increased to 84.8%. Conclusion: This data suggest that albumin, protein, gender, level of consciousness, pattern of bowel elimination in addition to the braden scale should be included in the pressure sore assessment tool.

  • PDF

세라믹스 분말 가압 성형 공정 변수 설계(1부: 유한요소 해석) (Design of ceramics powder compaction process parameters (Part Ⅰ : Finite element analysis))

  • 정상철;금영탁
    • 한국결정성장학회지
    • /
    • 제15권1호
    • /
    • pp.21-26
    • /
    • 2005
  • 세라믹 분말 가압 성형 공정을 전산모사 하고 패킹의 임의성과 입자 배열의 효과를 평가하기 위해서 유사한 임의 다중 입자 배열을 사용하여 2차원 막대 배열 가압 성형 모델을 도입하였다. 3개의 Al₂O₃ 입자와 3개의 Al 입자를 가지고 기공과 관련된 가압 성형 공정을 균질화 탄성계수를 사용하여 외연적 유한요소 해석하였다. 해석 결과는 이전 해석 결과 및 실험 결과와 비교하였다. 마지막으로, 분말 입자의 마찰계수와 상대밀도의 관계를 얻기 위한 해석이 수행되었다.

FRP선박 외판재의 충격 및 마모 거동 (Impact and Wear Behavior of Side Plate of FRP Ship)

  • 김형진;김재동;고성위;김영식
    • 동력기계공학회지
    • /
    • 제13권6호
    • /
    • pp.123-128
    • /
    • 2009
  • The effects of temperature and initial crack length on the impact fracture behavior for the side plate material of FRP ship were investigated. And the effects of the counterpart roughness and sliding distance on the volumetric wear of same material were investigated as well. Impact fracture toughness of GF/PE composites displayed maximum value when the temperature of specimen is room temperature and $50^{\circ}C$, and with decreasing the temperature of specimen, impact fracture toughness decreased. Impact fracture energy of GF/EP composites decreased with increasing the initial crack length of specimen, and this value decreased rapidly when the temperature of specimen is lowest, $-25^{\circ}C$. It is believed that sensitivity of notch on impact fracture energy were increased with decreasing the temperature of specimen. With increasing the sliding distance, the transition sliding distance, which displayed different aspect on the friction coefficient and the volumetric wear loss, were found out. Counterpart roughness had a big influence on the wear rate at running in period, however the effect of counterpart roughness became smaller with sliding speed increase in. Volumetric wear loss were increased with increasing the applied load and the counterpart roughness.

  • PDF

V-형 리브가 부착된 냉각유로의 형상 최적설계 (Shape Optimization of Cooling Channel with V-shaped Ribs)

  • 이영모;김광용
    • 한국유체기계학회 논문집
    • /
    • 제10권2호
    • /
    • pp.7-15
    • /
    • 2007
  • A numerical procedure for optimizing the shape of three-dimensional channel with V-shaped ribs extruded on both walls has been carried out to enhance the turbulent heat transfer. The response surface based optimization is used as an optimization technique with Reynolds-averaged Wavier-stoked analysis. Shear stress transport (SST) turbulence model is used as a turbulence closure. Computational results for average heat transfer rate show good agreements with experimental data. The objective function is defined as a linear combination of heat transfer and friction loss-related terms with a weighting factor. Three dimensionless variables such as, rib pitch-to-rib height ratio, rib height-to-channel height ratio, and the attack angle of the rib are chosen as design variables. Nineteen training points obtained by D-optimal designs for three design variables construct a reliable response surface. In the sensitivity analysis, it is found that the objective function is most sensitive to the ratio of rib height-to-channel height ratio. And, optimal values of design variables have been obtained in a range of the weighting factor.

주파수영역방법에 의한 비선형 모델변수의 실험적 규명 (Experimental identification of nonlinear model parameter by frequency domain method)

  • 김원진
    • 대한기계학회논문집A
    • /
    • 제22권2호
    • /
    • pp.458-466
    • /
    • 1998
  • In this work, a frequency domain method is tested numerically and experimentally to improve nonlinear model parameters using the frequency response function at the nonlinear element connected point of structure. This method extends the force-state mapping technique, which fits the nonlinear element forces with time domain response data, into frequency domain manipulations. The force-state mapping method in the time domain has limitations when applying to complex real structures because it needd a time domain lumped parameter model. On the other hand, the frequency domain method is relatively easily applicable to a complex real structure having nonlinear elements since it uses the frequency response function of each substurcture. Since this mehtod is performed in frequency domain, the number of equations required to identify the unknown parameters can be easily increased as many as it needed, just by not only varying excitation amplitude bot also selecting excitation frequency domain method has some advantages over the classical force-state mapping technique in the number of data points needed in curve fit and the sensitivity to response noise.

구분모드합성에 의한 드럼 브레이크 스퀼 소음 해석 및 저감 (Squeal Noise Analysis and Reduction of Drum Brake Using Component Mode Synthesis)

  • 김진호;배병주;이시복;김태종
    • 한국소음진동공학회논문집
    • /
    • 제15권1호
    • /
    • pp.72-80
    • /
    • 2005
  • Recent studies have dealt with brake squeal in terms of the coupled vibration of brake component parts. In this paper, we assemble the mode models derived from FE analysis of the individual components of the drum brake system into the system model by considering the friction interaction of the lining and drum at the interface. The validity of the component models are backed up by the experimental confirmation work. By scrutinizing the real parts of the complex eigen-values of the system, the unstable modes, which may be strong candidate sources of squeal noise, are identified. Mode participation factors are calculated to examine the modal coupling mechanism. The model predictions for the unstable frequencies pointed well the actual squeal noise frequencies measured through field test. Sensitivity analysis is also performed to identify parametric dependency trend of the unstable modes, which would indicate the direction for the squeal noise reduction design. Finally, reduction of the squeal noise tendency through shape modification is tried.

재료변수와 공정변수가 스템핑 성형성에 미치는 영향 연구 (Sensitivity Analysis of Material and Process Variables Affecting on the Stamping Formability)

  • 김영석;박기철
    • 대한기계학회논문집A
    • /
    • 제20권7호
    • /
    • pp.2246-2256
    • /
    • 1996
  • To investigate the effect of material and precess variables on stamping formability of sheet materials, simulations for the cup drawing and the Yoshida buckling test were carried out using ABAQUS, commercial nonlinear finite element analysis code. The various factor effects on stamping formability of sheet materials were analyzed by the designed process according to Taguch's orthogonal array experiment. Cup drawing simulation showed that local neckling was very sensitive to plastic anisotropy parameter of sheet material and friction coefficient between sheet and tool interface. Simulations for the Yoshida buckling test have clarified that buckling behaviour of sheet material was mostly susceptible to yield stress and sheet thickness mostly. However, plastic anisotropy parameter and strain hardening coefficient affect moderately buckling behaviour of steel sheets after the buckling initiation.

스퀼융합모델을 이용한 디스크 브레이크 스퀼 소음 연구 (Squeal Analysis of Disc Brake Using Analytical-FE Squeal Model)

  • 강재영
    • 한국산학기술학회논문지
    • /
    • 제15권11호
    • /
    • pp.6406-6411
    • /
    • 2014
  • 본 논문은 자동차 디스크 브레이크에서 발생하는 스퀼 현상을 보다 효과적으로 해석할 수 있는 스퀼 융합모델을 소개한다. 시스템의 형상 및 진동모드 추출은 유한요소법을 따르고 각 부품별 접촉부의 기술은 수학적 모델을 이용한다. 특히 회전하는 디스크와 정지상태의 패드 간 마찰력을 수학적으로 정교하게 기술하여 이를 유한요소 운동방정식에 접목한다. 이를 통해 선형안정성의 해의 정확도를 개선한다. 또한 다양한 시스템 파라메터 연구를 통하여 접촉강성에 대한 스퀼 민감도 및 모드연성 메카니즘을 구현한다.