• Title/Summary/Keyword: Friction properties

Search Result 1,518, Processing Time 0.03 seconds

A case study on the optimal tunnel design based on risk analysis (위험도 분석에 근거한 최적 터널설계 사례)

  • You, Kwang-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.5
    • /
    • pp.379-387
    • /
    • 2010
  • In this study, a case study was introduced for the design of a twin tunnel along high speed national highway Route 12 from Damyang to Sungsan. It was related to determine the optimal tunnel support pattern and excavation method based on a risk analysis in order to incorporate the uncertainty of ground properties. To this end, three alternatives with different amounts of support and excavation method were selected and risk analysis was performed by applying Monte Carlo simulation technique, respectively. Stability of the tunnel was quantified by the factor of safety. To improve the result, the 729 cases of the combination of ground properties (deformation modulus, cohesion, and internal friction angle) satisfying a Gaussian distribution were generated and applied. Also, stability of the tunnel was confirmed by analyzing the distribution of both displacement and shotcrete bending stress.

The effect of mechanical properties of carbon-based thin film on plasma nitrided injection mold steel (플라즈마 질화처리한 사출금형소재의 비정질 탄소계 박막 증착에 따른 기계적 특성 향상 효과)

  • Hye-Min Kim;Dae-Wook Kim
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.5
    • /
    • pp.328-334
    • /
    • 2023
  • The carbon-based films have various properties, which have been widely applied in industrial application. However, it has critical drawback for poor adhesion between films and metal substrate. In the present work, we have deposited carbon-based films on injection mold steel by plasma assisted chemical vapor deposition (PACVD). In order to improve adhesion, prior to film deposition, the substrate was nitriding-treated using PACVD. And its effect on the adhesion was investigated. Due to the pre-nitriding, the amorphous carbon nitride (a-CN:H) films presented 10 times higher adhesion (34.9 N) than that of un-nitirided. In addition, a friction coefficient was decreased from 0.29 to 0.15 for the amorphous carbon (a-C:H) due to improved adhesion. The obtained results demonstrated that pre-nitriding considerably improved the adhesion, and the relationship among adhesion, hardness, and surface roughness was discussed in detail.

Improvement in Tribological Properties of Carbon Steel Sintered by Powder Metallurgy (분말 야금에 의해 소결된 강철의 트라이볼로지 특성 향상)

  • Choi, S.I.M.;Karimbaev, R.;Pyun, Y.S.;Amanov, A.
    • Tribology and Lubricants
    • /
    • v.36 no.4
    • /
    • pp.244-252
    • /
    • 2020
  • Materials manufactured by powder metallurgy (PM) are widely used in various applications such as water pump, shock absorber, and airplane components due to the reduction in the cost and weight. In this study, tribological properties of carbon steel subjected by surface treatment were investigated. The main purpose is to increase the strength and improve the tribological properties by reducing pores that formed by PM. Moreover, the surface treatment was carried out at room and high temperatures (RT and HT). The surface roughness of the untreated (NON) and treated (AFTER) samples was measured. It was found that the surface roughness was reduced after both the RT AFTER and HT AFTER compared to RT NON sample. The tribological properties of the samples were performed against bearing steel ball under dry conditions. The friction coefficient of the RT NON samples was reduced by 22% and 56% RT AFTER and HT AFTER, respectively. The wear volume of the RT NON sample was also reduced by 43% and 87% RT AFTER and HT AFTER, respectively. Tribocorrosion tests were also performed and it was found that the surface of the RT AFTER, HT AFTER samples was less corroded compared to RT NON sample. The HT AFTER sample demonstrated a relatively higher corrosion potential in comparison with the RT AFTER samples. Hence, it was confirmed that after surface modification the surface roughness and hardness of the samples were significantly improved resulting in improvement in tribological and tribocorrosion behaviors of PM carbon steel.

Physical properties of granitic weathered soil on natural terrain around Seoul city (서울주변에 분포한 화강암류 풍화토층의 물리적 성질)

  • Kim, Kyeong-Su
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.1122-1129
    • /
    • 2010
  • Various soil tests were performed in the laboratory after soil samples were obtained from natural terrains distributed on the granitic rocks where are located in Mt. Bukhan, Mt. Surak and Mt. Gwanak around Seoul. Through the comparison of soil properties in each mountain, the difference of soil properties in a similar geological condition was investigated. According to the result of soil test, the soils were generally classified into calyey and silty sands with a well grade. Soil densities are ranged from $2.62kg/cm^3$ to $2.67kg/cm^3$, and water contents of soils are ranged from 3.77% to 31.12%. These values are not sorted locally. The wet unit weights of soils are ranged from $1.092kg/cm^3$ to $1.814kg/cm^3$. It has a big difference between the average values because that of Mt. Bukhan is $1.604kg/cm^3$ and those of Mt. Surak and Mt. Gwanak are $1.500kg/cm^3$ and $1.331kg/cm^3$, respectively. The internal friction angles are ranged from $31^{\circ}$ to $39^{\circ}$ and the cohesions are ranged from 1.57kPa to 8.63kPa. The shear strengths are too high and similar in all regions. The coefficients of permeability are ranged from $3.07{\times}10^{-3}cm/sec$ to $4.61{\times}10^{-2}cm/sec$. So, these soils are evaluated as a middle to high permeable ground. On average, the value of Mt. Bukhan is $1.47{\times}10^{-2}cm/sec$ and the values of Mt. Surak and Mt. Kwanak are $1.29{\times}10^{-2}cm/sec$ and $1.66{\times}10^{-2}cm/sec$, respectively.

  • PDF

Geotechnical characteristics and empirical geo-engineering relations of the South Pars Zone marls, Iran

  • Azarafza, Mohammad;Ghazifard, Akbar;Akgun, Haluk;Asghari-Kaljahi, Ebrahim
    • Geomechanics and Engineering
    • /
    • v.19 no.5
    • /
    • pp.393-405
    • /
    • 2019
  • This paper evaluates the geotechnical and geo-engineering properties of the South Pars Zone (SPZ) marls in Assalouyeh, Iran. These marly beds mostly belong to the Aghajari and Mishan formations which entail the gray, cream, black, green, dark red and pink types. Marls can be observed as rock (soft rock) or soil. Marlstone outcrops show a relatively rapid change to soils in the presence of weathering. To geotechnically characterise the marls, field and laboratory experiments such as particle-size distribution, hydrometer, Atterberg limits, uniaxial compression, laboratory direct-shear, durability and carbonate content tests have been performed on soil and rock samples to investigate the physico-mechanical properties and behaviour of the SPZ marls in order to establish empirical relations between the geo-engineering features of the marls. Based on the experiments conducted on marly soils, the USCS classes of the marls is CL to CH which has a LL ranging from 32 to 57% and PL ranging from 18 to 27%. Mineralogical analyses of the samples revealed that the major clay minerals of the marls belong to the smectite or illite groups with low to moderate swelling activities. The geomechanical investigations revealed that the SPZ marls are classified as argillaceous lime, calcareous marl and marlstone (based on the carbonate content) which show variations in the geomechanical properties (i.e., with a cohesion ranging from 97 to 320 kPa and a friction angle ranging from 16 to 35 degrees). The results of the durability tests revealed that the degradation potential showed a wide variation from none to fully disintegrated. According to the results of the experiments, the studied marls have been classified as calcareous marl, marlstone and argillaceous lime due to the variations in the carbonate and clay contents. The results have shown that an increase in the carbonate content leads to a decrease in the degradation potential and an increase in the density and strength parameters such as durability and compressive strength. A comparison of the empirical relationships obtained from the regression analyses with similar studies revealed that the results obtained herein are reasonably reliable.

Study on the Geotechnical Characteristics of Granite in Korea and their Correlation with Rock Classification Method (국내 화강암의 지반공학적 특성 및 암반분류법과의 상관성에 관한 연구)

  • SunWoo, Choon;Ryu, Dong-Woo;Kim, Hyung-Mok;Kim, Ki-Seog
    • Tunnel and Underground Space
    • /
    • v.21 no.3
    • /
    • pp.205-215
    • /
    • 2011
  • In this study, we analyzed physical properties of granites and their correlation with rock mass classification methods. The granite samples were obtained from field survey, in-situ borehole tests and laboratory tests for a design phase of various roads, railways and other civil engineering works in Korea. Among the measured physical properties, the results of unit weight, compressive strength, tensile strength, seismic velocity, cohesion, friction angle, elastic modulus and deformation modulus were introduced. We also correlated these properties with the compressive strength. The results of different rock classification method of RQD, RMR, and Q-system against the granites in Korea were compared with each other, and the correlation equations were proposed in a more simplified form. We also derived RMR values using the compressive strength as well as the RQD values of in-situ drilled cores, and estimated the deformation modulus of in-situ rock mass in terms of the RMR values.

The Mechanical Properties of Rocks Distributed at a Metal Mine in Jeongseon (정선지역 철광산에 분포하는 암석의 역학적 특성)

  • Kim, Jong-Woo;Park, Chan;Kim, Ju-Hwan;Heo, Seok;Kim, Dong-Kyu;Lee, Dong-Kil;Jo, Young-Do;Park, Sam-Gyu
    • Tunnel and Underground Space
    • /
    • v.25 no.3
    • /
    • pp.231-243
    • /
    • 2015
  • In this study, both in-situ stress measurements and a lot of laboratory rock tests were conducted at a metal mine in Jeongseon, Korea. The stress ratio obtained from in-situ stress measurements showed a tendency to decrease according to depth below surface and its average value was 1.10. The mechanical properties such as unit weight, absorption ratio, porosity, elastic wave velocity, uniaxial compressive strength, Young's modulus, Poisson's ratio, tensile strength, shore hardness, friction angle and cohesion were investigated for the four different rocks mainly distributed at a studied mine, which were dolomite, felsite, granite and magnetite. The mechanical properties of the four different rocks were compared by means of statistical analyses, whereupon the felsite and the granite turned out to have more strength characteristics than the magnetite. The correlation of mechanical properties was also investigated, whereupon a few results against the general correlation were found out. The failure criteria of the four different rocks were finally discussed by means of both Mohr-Coulomb criterion and Hoek-Brown criterion.

Influence of Lithiation on Nanomechanical Properties of Silicon Nanowires Probed with Atomic Force Microscopy

  • Lee, Hyun-Soo;Shin, Weon-Ho;Kwon, Sang-Ku;Choi, Jang-Wook;Park, Jeong-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.110-110
    • /
    • 2011
  • The nanomechanical properties of fully lithiated and unlithiated silicon nanowire deposited on silicon substrate have been studied with atomic force microscopy. Silicon nanowires were synthesized using the vapor-liquid-solid process on stainless steel substrates using Au catalyst. Fully lithiated silicon nanowires were obtained by using the electrochemical method, followed by drop-casting on the silicon substrate. The roughness, derived from a line profile of the surface measured in contact mode atomic force microscopy, has a smaller value for lithiated silicon nanowire and a higher value for unlithiated silicon nanowire. Force spectroscopy was utilitzed to study the influence of lithiation on the tip-surface adhesion force. Lithiated silicon nanowire revealed a smaller value than that of the Si nanowire substrate by a factor of two, while the adhesion force of the silicon nanowire is similar to that of the silicon substrate. The Young's modulus obtained from the force-distance curve, also shows that the unlithiated silicon nanowire has a relatively higher value than lithiated silicon nanowire due to the elastically soft amorphous structures. The frictional forces acting on the tip sliding on the surface of lithiated and unlithiated silicon nanowire were obtained within the range of 0.5-4.0 Hz and 0.01-200 nN for velocity and load dependency, respectively. We explain the trend of adhesion and modulus in light of the materials properties of silicon and lithiated silicon. The results suggest a useful method for chemical identification of the lithiated region during the charging and discharging process.

  • PDF

A Study on the Correlation of the Skin Feeling with Rheological Parameters and Other Physical Properties (화장품 사용감과 레올로지 물성치 및 물리적인 특성 값들에 대한 상관관계 연구)

  • Lee, Young-Jin;Baik, Seung-Jae;Lee, Hye-Won;Nam, Yoon-Sung;Kim, Su-Jung;Han, Sang-Hoon;Kang, Hak-Hee
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.2
    • /
    • pp.141-145
    • /
    • 2004
  • This study was pursued to measure skin feeling of cosmetics by mechanical methods. For this attempt, skin feeling of cosmetics such as spreading properties, tackiness, and residual greasy feeling after skin application was explored with the amount and kinds of cosmetic compositions-emulsifiers, waxes, thickeners, polyols, and oils. Furthermore, the relationship between these cosmetic compositions and viscometry of cosmetic products was studied. In case of emulsifiers, waxes, and thickeners, they showed strong correlation with both skin feeling and the value of phase angle, the property of viscometry, respectively, while polyols and oils were observed a special tendency neither skin feeling nor the property of viscometry. It leads to the conclusion that skin feeling may be corresponded to not values of a mechanical measure completely but a function of several properties. We expect that a better correlation can be discovered with additionally measured properties such as friction, volatility, etc.

Effect of Pass Schedule on the Microstructures and Mechanical Properties of Multi-step Cold Rolled High Carbon Steel Wires (다단계 냉간 압연된 고탄소강 와이어의 미세조직 및 기계적 특성에 미치는 패스스케줄의 영향)

  • Woo, Dong-Hyeok;Lee, Wook-Jin;Park, Ik-Min;Park, Yong-Ho
    • Korean Journal of Materials Research
    • /
    • v.21 no.6
    • /
    • pp.320-326
    • /
    • 2011
  • Flat rolling of wire is an industrial process used to manufacture electrical flat wire, medical catheters, springs, piston segments and automobile parts, among other products. In a multi-step wire flat rolling process, a wire with a circular crosssection is rolled at room temperature between two flat rolls in several passes to achieve the desired thickness to width ratio. To manufacture a flat wire with a homogeneous microstructure, mechanical and metallurgical properties with an appropriate pass schedule, this study investigated the effect of each pass schedule (1stand ~ 4stand) on the microstructures, mechanical properties and widths of cold rolled high carbon steel wires using four-pass flat rolling process. The evolutions of the microstructures and mechanical properties of the widths of cold rolled wires during three different pass schedules of the flat rolling process of high carbon wires were investigated, and the results were compared with those for a conventional eight-pass schedule. In the width of cold rolled wires, three different pass schedules are clearly distinguished and discussed. The experimental conditions were the same rolling speed, rolling force, roll size, tensile strength of the material and friction coefficient. The experimental results showed that the four-pass flat cold rolling process was feasible for production of designed wire without cracks when appropriate pass schedules were applied.