Browse > Article
http://dx.doi.org/10.3740/MRSK.2011.21.6.320

Effect of Pass Schedule on the Microstructures and Mechanical Properties of Multi-step Cold Rolled High Carbon Steel Wires  

Woo, Dong-Hyeok (KISWIRE. LTD.)
Lee, Wook-Jin (Department of Materials Science and Engineering, Pusan National University)
Park, Ik-Min (Department of Materials Science and Engineering, Pusan National University)
Park, Yong-Ho (Department of Materials Science and Engineering, Pusan National University)
Publication Information
Korean Journal of Materials Research / v.21, no.6, 2011 , pp. 320-326 More about this Journal
Abstract
Flat rolling of wire is an industrial process used to manufacture electrical flat wire, medical catheters, springs, piston segments and automobile parts, among other products. In a multi-step wire flat rolling process, a wire with a circular crosssection is rolled at room temperature between two flat rolls in several passes to achieve the desired thickness to width ratio. To manufacture a flat wire with a homogeneous microstructure, mechanical and metallurgical properties with an appropriate pass schedule, this study investigated the effect of each pass schedule (1stand ~ 4stand) on the microstructures, mechanical properties and widths of cold rolled high carbon steel wires using four-pass flat rolling process. The evolutions of the microstructures and mechanical properties of the widths of cold rolled wires during three different pass schedules of the flat rolling process of high carbon wires were investigated, and the results were compared with those for a conventional eight-pass schedule. In the width of cold rolled wires, three different pass schedules are clearly distinguished and discussed. The experimental conditions were the same rolling speed, rolling force, roll size, tensile strength of the material and friction coefficient. The experimental results showed that the four-pass flat cold rolling process was feasible for production of designed wire without cracks when appropriate pass schedules were applied.
Keywords
$\b{cold\rolling\of\wire}$; pass schedule; $\b{flat\wire}$; wiper blade;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 M. Kazeminezhad and A. K. Taheri, J. Mater. Process. Tech., 160, 313 (2005).   DOI   ScienceOn
2 M. Kazeminezhad, A. K. Taheri and A. K. Tieu, J. Mater. Process. Tech., 200, 325 (2008).   DOI   ScienceOn
3 R. Iankov, J. Mater. Process. Tech., 142, 355 (2003).   DOI   ScienceOn
4 T. Masse, Y. Chastel, P. Montmitonnet, C. Bobadilla, N. Persem and S. Foissey, J. Mater. Process. Tech., 211, 103 (2011).   DOI   ScienceOn
5 B. Carlsson, J. Mater. Process. Tech., 73, 1 (1998).   DOI   ScienceOn
6 S. K. Lee, D. C. Ko and B. M. Kim, Mater. Des., 30, 2919 (2009).   DOI   ScienceOn
7 S. K Lee, M. A. Kim and B. M. Kim, in Proceedings of the Korean Society for Technology of Plasticity Conference(COEX, Korea, Nov., 2002), p.71.
8 S. H. Lee, D. H. Kim, I. Y. Hwang, S. Y. Ok, D. H. Kim, W. J. Hwang and B. M. Kim, in Proceedings of the Korean Society of Precision Engineering Conference (Jeju, Korea, May, 2008), p.813.
9 D. H. Na and Y. S. Lee, Trans. KSME A, 34(10), 1443 (2010) (in Korean).   과학기술학회마을
10 S. -H. Lee, S. -Y. Ok, I. -Y. Hwang, W. -J. Hwang and B. -M. Kim, J. KSPE, 25(11), 66 (2008) (in Korean).   과학기술학회마을
11 S. M. Yoon, S. H. Park and S. Y Synn, Transactions of Materials Processing, 9(2), 112 (2000) (in Korean).   과학기술학회마을
12 M. Kazeminezhad and A. K. Taheri, Mater. Des., 26, 99 (2005).   DOI   ScienceOn
13 C. Vallellano, P. A. Cabanillas and F. J. Garcia-Lomas, J. Mater. Process. Tech., 195, 63 (2008).   DOI   ScienceOn
14 D. R. Askeland and P. P. Fulay, The Science and Engineering of Metals, 5th ed., p. 265-283, Scitech, USA (2008).
15 Members of The Wire Association, Inc., Steel Wire Handbook, Vol. 3, p. 1-32, ed. A. B. Dove, The Wire Association INT'L, Guilford, CT (1986).
16 M. Kazeminezhad and A. K. Taheri, J. Mater. Process. Tech., 171, 253 (2006).   DOI   ScienceOn