Geotechnical characteristics and empirical geo-engineering relations of the South Pars Zone marls, Iran |
Azarafza, Mohammad
(Department of Geology, University of Isfahan)
Ghazifard, Akbar (Department of Geology, University of Isfahan) Akgun, Haluk (Geotechnical Unit, Department of Geological Engineering, Middle East Technical University (METU)) Asghari-Kaljahi, Ebrahim (Department of Earth Sciences, University of Tabriz) |
1 | ASTM D3744 (2011), Standard Test Method for Aggregate Durability Index, ASTM International, West Conshohocken, Pennsylvania, U.S.A. |
2 | ASTM D422 (2006), Standard Test Methods for Particle Size Analysis of Soils, ASTM International, West Conshohocken, Pennsylvania, U.S.A. |
3 | ASTM D4318 (2005), Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils, ASTM International, West Conshohocken, Pennsylvania, U.S.A. |
4 | ASTM D4373 (2014), Standard Test Method for Rapid Calcium Carbonate Content of Soils, ASTM International, West Conshohocken, Pennsylvania, U.S.A. |
5 | ASTM D5607 (2002), Performing Laboratory Direct Shear Strength Tests of Rock Specimens under Constant Normal Force, ASTM International, West Conshohocken, Pennsylvania, U.S.A. |
6 | ASTM D7012 (2014), Standard Test Methods for Compressive Strength and Elastic Moduli of Intact Rock Core Specimens under Varying States of Stress and Temperatures, ASTM International, West Conshohocken, Pennsylvania, U.S.A. |
7 | Atalar, C. and Das, B.M. (2004), "Plasticity characteristics of the soils of the Camlibel landslide", Proceedings of the 10th Turkish Congress on Soil Mechanics and Foundation Engineering, Istanbul, Turkey, August. |
8 | Atalar, C. and Das, B.M. (2009), "Geotechnical properties of Nicosia soils, Cyprus", Proceedings of the 2nd International Conference on New Developments in Soil Mechanics and Geotechnical Engineering, Nicosia, North Cyprus, Turkey, May. |
9 | Athmania, D., Benaissa, A., Hammadi, A. and Bouassida, M. (2010), "Clay and marl formation susceptibility in Mila province, Algeria", Geotech. Geol. Eng., 28(6), 805-813. https://doi.org/10.1007/s10706-010-9341-5. DOI |
10 | Ayalew, L., Moeller, D. and Reik, G. (2009), "Geotechnical aspects and stability of road cuts in the Blue Nile Basin, Ethiopia", Geotech. Geol. Eng., 27, 713-728. https://doi.org/10.1007/s10706-009-9270-3 DOI |
11 | Azarafza, M., Akgun, H. and Asghari-Kaljahi, E. (2017a), "Assessment of rock slope stability by slope mass rating (SMR): A case study for the gas flare site in Assalouyeh, South of Iran", Geomech. Eng., 13(4), 571-584. https://doi.org/10.12989/gae.2017.13.4.571. DOI |
12 | Azarafza, M., Asghari-Kaljahi, E. and Akgun, H. (2017b), "Assessment of discontinuous rock slope stability with block theory and numerical modeling: a case study for the South Pars Gas Complex, Assalouyeh, Iran", Environ. Earth Sci., 76(11), 397. https://doi.org/10.1007/s12665-017-6711-9. DOI |
13 | Azarafza, M., Asghari-Kaljahi, E. and Moshrefy-Far, M.R. (2015), "Dynamic stability analysis of jointed rock slopes under earthquake condition (Case study: Gas Flare Site of phase 7 in South Pars Gas Complex-Assalouyeh)", J. Iran. Assoc. Eng. Geol., 8(1-2), 67-78. |
14 | Azarafza, M., Ghazifard, A. and Asghari-Kaljahi, E. (2018a), "Effect of clay minerals on geotechnical properties of finegrained alluviums of South Pars Special Zone (Assalouyeh)", Proceedings of the 36th National and the 3rd International Geosciences Congress, Tehran, Iran, February (in Persian). |
15 | Azarafza, M., Ghazifard, A. and Asghari-Kaljahi, E. (2018b), "Earthquake hazard assessment in Assalouyeh area based on NGA seismicity model", J. Nat. Environ. Hazard, 7(18), 131-147 (in Persian). |
16 | Draper, N.R. and Smith, H. (1998), Applied Regression Analysis, 3rd Edition, Wiley, New Jersey, U.S.A. |
17 | Fookes, P.G. and Higginbottom, I.E. (1980), "Some problems of construction aggregates in desert areas, with particular reference to the Arabian Peninsula: Occurrence and special characteristics", Proc. Inst. Civ. Eng., 68(1), 39-67. https://doi.org/10.1680/iicep.1980.2504. |
18 | El-Amrani Paaza, N., Lamas, F., Irigaray, C. and Chacon, J. (1998), "Engineering geological characterization of Neogene marls in the Southeastern Granada Basin (Granada, Spain)", Eng. Geol., 50(1-2), 165-175. https://doi.org/10.1016/S0013-7952(98)00008-8. DOI |
19 | El-Amrani Paaza, N., Lamas, F., Irigaray, C., Chacon, J. and Oteo, C. (2000), "The residual shear strength of Neogene marly soils in the Granada and Guadix basins, southeastern Spain", Bull. Eng. Geol. Environ., 58, 99-105. https://doi.org/10.1007/s100640050003. DOI |
20 | El-Howayek, A., Santagata, M., Bobet, A. and Siddiki, N.Z. (2015), "Engineering properties of marls", Joint Transportation Research Program Publication No. FHWA/IN/JTRP-2015/11, Purdue University, West Lafayette, Indiana, U.S.A. |
21 | Fox, J. (2015), Applied Regression Analysis and Generalized Linear Models, 3rd Edition, SAGE Publications, California, U.S.A. |
22 | Geological Survey of Iran (2009a), Assalouyeh 1:250,000 Geological Map, Geological Survey of Iran Press, Tehran, Iran. |
23 | Geological Survey of Iran (2009b), Assalouyeh Geological Survey: Stratigraphy and Paleontology Report, Geological Survey of Iran press, Tehran, Iran. |
24 | Hooshmand, A., Aminfar, M.H., Asghari, E. and Ahmadi, H. (2012), "Mechanical and physical characterization of Tabriz Marls, Iran", Geotech. Geol. Eng., 30, 219-232. https://doi.org/10.1007/s10706-011-9464-3. DOI |
25 | Google Earth, (2018), Satellite images of Assalouyeh region of Iran; Google Inc., Google Plex, California, U.S.A. https://www.google.com/earth. |
26 | Gronbech, G.L., Nielsen, B.N., Ibsen, L.B. and Stockmarr, P. (2015), "Geotechnical properties of Sovind Marl - a plastic Eocene clay", Can. Geotech. J., 52(4), 469-478. https://doi.org/10.1139/cgj-2014-0066. DOI |
27 | Holtz, R.D. and Kovacs, W.D. (1981), An Introduction to Geotechnical Engineering, Prentice Hall Inc, New Jersey, U.S.A. |
28 | Jalali-Milani, S., Asghari-Kaljahi, E., Barzegari, G. and Hajialilue-Bonab, M. (2017), "Consolidation deformation of Baghmisheh marls of Tabriz, Iran", Geomech. Eng., 12(4), 561-577. https://doi.org/10.12989/gae.2017.12.4.561. DOI |
29 | Hunt, R.E. (2006), Geotechnical Investigation Methods: A Field Guide for Geotechnical Engineers, CRC Press, Florida, U.S.A. |
30 | Ioanna, I., Dimitrios, R., Theodora, P. and Paris, T. (2009), "Geotechnical and mineralogical properties of weak rocks from Central Greece", Cent. Eur. J. Geosci., 1(4), 431-442. DOI |
31 | Jung, C., Bobet, A. and Zia Siddiki, N. (2011), "Simple method to identify marl soils", Trans. Res. Rec. J. Transport. Res. Board, 2232(1), 76-84. https://doi.org/10.3141%2F2232-08. DOI |
32 | Mebarki, M., Kareche, T., Derfouf F.E.M., Taibi, S. and Aboubekr, N. (2019), "Hydromechanical behavior of a natural swelling soil of Boumagueur region (east of Algeria)", Geomech. Eng., 17(1), 69-79. https://doi.org/10.12989/gae.2019.17.1.069. DOI |
33 | Lamas, F., Irigaray, C. and Chacon, J. (2002), "Geotechnical characterization of carbonate marls for the construction of impermeable dam cores", Eng. Geol., 66(3-4), 283-294. https://doi.org/10.1016/S0013-7952(02)00048-0. DOI |
34 | Lamas, F., Irigaray, C. and Chacon, J. (2005), "Selection of the most appropriate method to determine the carbonate content for engineering purposes", Eng. Geol., 81(1), 32-41. https://doi.org/10.1016/j.enggeo.2005.07.005. DOI |
35 | Lei, H., Feng, S. and Jiang, Y. (2018), "Geotechnical characteristics and consolidation properties of Tianjin marine clay", Geomech. Eng., 16(2), 125-140. https://doi.org/10.12989/gae.2018.16.2.125. DOI |
36 | Mohamed, A.M.O. (2000), "The role of clay minerals in marly soils on its stability", Eng. Geol., 57(3-4), 193-203. https://doi.org/10.1016/S0013-7952(00)00029-6. DOI |
37 | Seed, H.B., Woodward, R.J. and Lundgren, R. (1962), "Prediction of swelling potential for compacted clays", J. Soil Mech. Found. Div., 88(SM3), 53-87. DOI |
38 | Ouhadi, V.R. and Yong, R.N. (2003), "The role of clay fraction of marly soils on their post stabilization failure", Eng. Geol., 70, 365-375. https://doi.org/10.1016/S0013-7952(03)00104-2. DOI |
39 | Pettijohn, F.J. (1983), Sedimentary Rock, (3rd Edition), Harpercollins, New York, U.S.A. |
40 | Seber, G.A.F. and Lee, A.J. (2003), Linear Regression Analysis, (2nd Edition), Wiley, New Jersey, U.S.A. |
41 | Ouhadi, V.R. (1997), "The role of marl components and ettringite on the stability of stabilized marl", Ph.D. Dissertation, McGill University, Montreal, Canada. |
42 | Skempton, A.W. (1953), "The colloidal activity of clays", Proceedings of the 3rd International Conference on Soil Mechanics and Foundation Engineering, Zurich, Switzerland, August. |
43 | Terzaghi, K. and Peck, R.B. (1967), Soil Mechanics in Engineering Practice, (2nd Edition), Wiley, New Jersey, U.S.A. |
44 | Yilmaz, I. (2006), "Indirect estimation of the swelling percent and a new classification of soils depending on liquid limit and cation exchange capacity", Eng. Geol.., 85(3-4), 295-301. https://doi.org/10.1016/j.enggeo.2006.02.005. DOI |
45 | Yong, R.N., Ouhadi, V.R. and Mohamed, A.M.O. (1996), "Physicochemical evaluation of failure of stabilized marl soil", Proceedings of the 49th Canadian Geotechnical Conference Frontiers in Geotechnology, Ottawa, Canada, September. |
46 | Das, B.M. (2008), Advanced Soil Mechanics, (3rd Edition), Taylor & Francis, Didcot, England, U.K. |
47 | Akili, W. (2008), "Laboratory tests on two remolded carbonate soils from the Arabian Gulf Shore", Proceedings of the GeoCongress 2008, New Orleans, Louisiana, U.S.A., March. |
48 | Acar, A., Dincer, I. and Necdet, M. (2007), "Geotechnical characteristics of the clayey soils and rocks of the North Lefkosa, Nicosia, Cyprus", Bull. Eng. Geol. Environ., 66(4), 473-481. https://doi.org/10.1007/s10064-007-0090-5. DOI |
49 | Aghanabati, A. (2004), Geology of Iran, Geological Survey of Iran press, Tehran, Iran. |
50 | Akili, W. (1981), "Some properties of remoulded carbonate soils", Proceedings of the 10th International Conference on Soil Mechanics and Foundation Engineering, Stockholm, Sweden, June. |
51 | Alber, M. and Heiland, J. (2001), "Investigation of a limestone pillar failure: part 1; Geology, laboratory testing and numerical modelling", Rock Mech. Rock Eng., 34(3), 167-186. https://doi.org/10.1007/s006030170007. DOI |
52 | Angin, Z. and Ikizler, S.B. (2018), "Assessment of swelling pressure of stabilized bentonite", Geomech. Eng., 15(6), 1219-1225. https://doi.org/10.12989/gae.2018.15.6.1219. DOI |
53 | Asghari-Kaljahi, E., Barzegari, G. and Jalali-Milani, G. (2019), "Assessment of the swelling potential of Baghmisheh marls in Tabriz, Iran", Geomech. Eng., 18(3), 267-275. https://doi.org/10.12989/gae.2019.18.3.267. DOI |
54 | ASTM C830 (2016), Standard Test Methods for Apparent Porosity, Liquid Absorption, Apparent Specific Gravity, and Bulk Density of Refractory Shapes by Vacuum Pressure, ASTM International, West Conshohocken, Pennsylvania, U.S.A. |
55 | ASTM D1140 (2017), Standard Test Methods for Amount of Material in Soil Finer than No. 200 (75 micrometer) Sieve, ASTM International, West Conshohocken, Pennsylvania, U.S.A. |
56 | ASTM D2166 (2016), Standard Test Method for Unconfined Compressive Strength of Cohesive Soil, ASTM International, West Conshohocken, Pennsylvania, U.S.A. |
57 | ASTM D3080 (2011), Standard Test Method for Direct Shear Test of Soils under Consolidated Drained Conditions, ASTM International, West Conshohocken, Pennsylvania, U.S.A. |