• Title/Summary/Keyword: Freundlich adsorption isotherm

Search Result 380, Processing Time 0.023 seconds

Removal of Cd(II) by Cation Exchange Resin in Differential Bed Reactor (미분층반응기에서 양이온 교환수지에 의한 카드뮴(II)의 제거)

  • Kim, Jong-Tae;Chung, Jaygwan G.
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.7
    • /
    • pp.1193-1203
    • /
    • 2000
  • In this study, in order to remove Cd(II) from aqueous solutions, strongly acidic cation exchange resin(SK1B) by Diaion Co. was employed as an adsorbent. Experiments were mainly performed in two parts at room temperature($25{\pm}5^{\circ}C$) : batch tests and adsorption kinetics tests. In batch tests adsorption equilibrium time, pH effects, temperature effects, several adsorption isotherms, and finally desorption tests were examined. In differential bed tests, an optimum flow rate and an overall adsorption rate were obtained. In the batch experiment, adsorption capability increased with pH and became constant above pH 6 and adsorption quantity increased with temperature. Batch experimental data found that Freundlich and Sips adsorption isotherms were more favorable than Langmuir adsorption isotherm over the range of concentration (5~15ppm). The desorbent used in the desorption test was hydrochloric acid solution with different concentrations(0.01~2N). The degree of regeneration increased with concentration of desorbent and decreased slightly with the number of regeneration. In the continuous flow process using a differential bed reactor, the optimum flow rate was $564m{\ell}/min$ above which the film diffusion resistance was minimized. The overall adsorption rate for the removal of Cd(II) by cation exchange resin was found as follows ; $r=1.3785C_{fc}^{1.2421}-2.0907{\times}10^{0.0746C_i}\;q_e^{0.0121C_i-0.0301}$

  • PDF

Study of Equilibrium, Kinetic and Thermodynamic Parameters about Fluorescein Dye Adsorbed onto Activated Carbon (활성탄을 이용한 플루오레세인 염료 흡착에 대한 평형, 동력학 및 열역학 파라미터의 연구)

  • Lee, Jong-Jib;Um, Myeong Heon
    • Applied Chemistry for Engineering
    • /
    • v.23 no.5
    • /
    • pp.450-455
    • /
    • 2012
  • The paper includes the utlization of an activated carbon as a potential adsorbent to remove a hazardous fluorescein dye from an aqueous solution. Batch adsorption experiments were carried out for the removal of fluorescein dyes using a granular activated carbon as an adsorbent. The effects of various parameters such as pH, amount of adsorbent, contact time, initial concentration and temperature of the adsoprtion system were investigated. The experimental results revealed that activated carbon exhibit high efficiencies to remove fluorescein dyes from the aqueous solution. The equilibrium process can be well described by Freundlich isotherm in the temperature range from 298 K to 318 K. From adsorption kinetic experiments, the adsorption process followed a pseudo second order kinetic model, and the adsorption rate constant ($k_2$) decreased with increasing the initial concentration of fluorescein. The free energy of adsorption ${\Delta}G^0$), enthalpy ${\Delta}H^0$), and entropy (${\Delta}S^0$) change were calculated to predict the nature adsorption. The estimated values for ${\Delta}G^0$ were -17.11~-20.50 kJ/mol over an activated carbon at 250 mg/L, indicated toward a spontaneous process. The positve value for ${\Delta}H^0$, 33.2 kJ/mol, indicates that the adsorption of fluorescein dyes on an activated carbon is an endothermic process.

Characteristics and Parameters for Adsorption of Carbol Fuchsin Dye by Coal-based Activated Carbon: Kinetic and Thermodynamic (석탄계 활성탄에 의한 Carbol Fuchsin의 흡착 특성과 파라미터: 동력학 및 열역학)

  • Lee, Jong Jib
    • Applied Chemistry for Engineering
    • /
    • v.32 no.3
    • /
    • pp.283-289
    • /
    • 2021
  • Adsorption characteristics of carbol fuchsin (CF) dye by coal-based activated carbon (CAC) were investigated using pH, initial concentration, temperature and contact time as adsorption variables. CF dissociates in water to have a cation, NH2+, which is bonded to the negatively charged surface of the activated carbon in the basic region by electrostatic attraction. Under the optimum condition of pH 11, 96.6% of the initial concentration was adsorbed. Isothermal adsorption behavior was analyzed using Langmuir, Freundlich, Temkin and Dubinin-Radushkevich models. Langmuir's equation was the best fit for the experimental results. Therefore, the adsorption mechanism was expected to be adsorbed as a monolayer on the surface of activated carbon with a uniform energy distribution. From the evaluated Langmuir's dimensionless separation coefficients (RL = 0.503~0.672), it was found that CF can be effectively treated by activated carbon. The adsorption energies determined by Temkin and Dubinin-Radushkevich models were E = 15.31~7.12 J/mol and B = 0.223~0.365 kJ/mol, respectively. Therefore, the adsorption process was physical (E < 20 J/mol, B < 8 kJ/mol). The experimental result of adsorption kinetics fit better the pseudo second order model. In the adsorption reaction of CF dye to CAC, the negative free energy change increased as the temperature increased. It was found that the spontaneity also increased with increasing temperature. The positive enthalpy change (40.09 kJ/mol) indicated an endothermic reaction.

Development of Loess Composite for the Control of Phosphorus Release from Lake Sediments (호소 퇴적층으로부터 용출되는 인 제거를 위한 황토 복합체 개발)

  • Shin, Gwan-Woo;Kim, Keum-Yong;Lee, Sang-Ill
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.1
    • /
    • pp.50-56
    • /
    • 2012
  • In this study, loess composites, loess with lanthanum and with aluminum, were made and evaluated for treatment of phosphorus removal in natural water system. Desiccation method for production of loess composite was superior to centrifugation method in obtaining high concentrated composites of lanthanum and aluminum. Washing of loess lanthanum composite by water did not deteriorat the lanthanum concentration in the composite, but this lowered the aluminum concentration of loess aluminum composite. Total of 15 and 37.5% of aluminum contents were removed after first washing treatment in aluminum loess of 0.05% and 0.1% respectively. However, no more aluminum loss was monitored with increase of washing times. Phosphorus removal efficiencies were not decreased with washed loess aluminum composite. Phosphorus removal was successfully achieved by adsorption of phosphate to loess composite at pH range of 5.0 ~ 8.0. Freundlich and Langmuir adsorption isotherm was observed in the adsorption of phosphate for loess composite. Dosages of 0.05% and 0.1% lanthanum composite for 95% of phosphorus removal could reduce its usage amount to 25% and 50%, respectively, comparing with dosage of loess alone. Dosages of 0.05% and 0.1% aluminum composite could reduce its usage amount to 48% and 63%, respectively.

A New Approach on Adsorption and Transport of Cesium in Organic Matter-rich Soil and Groundwater Environments Changed by Wildfires (산불로 인해 변화하는 토양지하수 환경에서의 세슘 흡착 및 거동에 대한 새로운 고찰)

  • Bae, Hyojin;Choung, Sungwook;Jeong, Jina
    • Journal of Korean Society on Water Environment
    • /
    • v.38 no.1
    • /
    • pp.10-18
    • /
    • 2022
  • This study was conducted to investigate the effect of soil and groundwater environment changed by wildfire on cesium adsorption and transport. Soil samples (A, B) used in the study were collected from Gangwon-do, where wildfires frequently occur, and the adsorption and transport of cesium in the samples were evaluated through batch and column experiments. As a result of the batch adsorption experiments with various concentrations of cesium (CW ≈ 10~105 ㎍/L), the adsorption distribution coefficient (Kd) of cesium was higher in sample A for all observed concentrations. It means that the adsorption capacity of sample A was higher to that of sample B, which was also confirmed through the parameters of adsorption isotherm models (Freundlich and Langmuir model) applied to the experimental results. The fixed bed column experiments simulated the actual soil and groundwater environment, and they showed that cesium was retarded approximately 43 and 27 times than a nonreactive tracer in sample A and B, respectively. In particular, a significant retardation occurred in the sample A. Although sample A contains little clays, total organic carbon (TOC) contents were 3 times greater than sample B. These results imply that particulate organic matter caused by wildfire might influence the adsorption and transport of cesium in the organic matter-rich soil and groundwater environment.

Adsorption Kinetic and Thermodynamic Studies of Tricyclazole on Granular Activated Carbon (입상 활성탄에 대한 트리사이크라졸의 흡착동력학 및 열역학적 연구)

  • Lee, Jong-Jib;Cho, Jung-Ho;Kim, H.T.
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.9
    • /
    • pp.623-629
    • /
    • 2011
  • The adsorption characteristics of tricyclazole by granular activated carbon were experimently investigated in the batch adsorption. Kinetic studies of adsorption of tricyclazole were carried out at 298, 308 and 318 K, using aqueous solutions with 250, 500 and 1,000 mg/L initial concentration of tricyclazole. It was established that the adsorption equilibrium of tricyclazole on granular activated carbon was successfully fitted by Freundlich isotherm equation at 298 K. The pseudo first order and pseudo second order models were used to evaluate the kinetic data and the pseudo second order kinetic model was the best with good correlation. Values of the rate constant ($k_2$) have been calculated as 0.1076, 0.0531, and 0.0309 g/mg h at 250, 500 and 1,000 mg/L initial concentration of tricyclazole, respectively. Thermodynamic parameter such as activation energy, standard enthalpy, standard entropy and standard free energy were evaluated. The positive value for enthalpy, -66.43 kJ/mol indicated that adsorption interaction of tricyclazole on activated carbon was an exothermic process. The estimated values for standard free energy were -5.08~-8.10 kJ/mol over activated carbon at 200 mg/L, indicated toward a exothermic process.

Adsorption Characteristics Evaluation of Natural Zeolite for Heavy-metal Contaminated Material Remediation (중금속 오염물질 정화를 위한 천연제올라이트의 흡착특성)

  • Shin, Eun-Chul;Park, Jeong-Jun;Jeong, Cheol-Gyu;Kim, Sung-Hwan
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.2
    • /
    • pp.59-67
    • /
    • 2014
  • The amount of the contaminants that can be adsorbed on the drain was evaluated for the effective remediation of the contaminated soil, and the contaminants adsorptivity of the drain was evaluated by comparing the isothermal adsorption model after carrying out the contaminants adsorption test of the reactants coated on the surface of the drain. The reactant used in the experiment is a natural zeolite, and the contaminants are copper, lead and cadmium. The results that Freundlich and Langmuir adsorption isotherm model are compared to the adsorption amount according to the change of the initial concentration by the contaminants. As a result of the component analysis, because Si, Al and O are contained approximately 28%, 11% and 48%, respectively, it is identified that the material coated on the surface of the drain is the component of the zeolite which is the reactant for the adsorption of the heavy-metal (Cu, Pb, Cd) contaminants. The heavy-metal adsorption kinetic of the zeolite which is the reactant was decreased in order of lead, copper and cadmium. The important factor of the performance evaluation of the adsorbent is the reaction rate, and if zeolite is used as the reactant in the relationship between the maximum amount of adsorption and reaction rate, it can be utilized as the design factor that determine the removal order of the complex heavy-metal. In other words, because the maximum adsorption quantity of lead is smaller compared to copper but the reaction rate is relatively fast, it can be primarily removed, and copper can be removed after removing the lead. It was analyzed that Cadmium can be finally removed after that other heavy-metal is removed.

Effects of pH and Temperature on the Adsorption of Cationic Dyes from Aqueous Suspension by Maghnia Montmorillonite (수용액으로부터 양이온 염료 흡수에 대한 pH 및 온도 효과)

  • Elaziouti, A.;Laouedj, N.
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.2
    • /
    • pp.208-217
    • /
    • 2011
  • The effects of pH and temperature on the removal of two dyes (neutral red; NR and malachite green oxalates; MG) from aqueous effluents using Maghnia montmorillonite clay in a batch adsorption process were investigated. The results showed the stability of the optical properties of MG in aqueous solution and adsorbed onto clay under wide range of pH 3-9. However, the interaction of NR dye with clay is accompanied by a red shift of the main absorption bands of monomer cations under pH range of 3-5, whereas, those of neutral form remains nearly constant over the pH range of 8-12. The optimal pH for favorable adsorption of the dyes, i.e. ${\geq}$90% has been achieved in aqueous solutions at 6 and 7 for NR and VM respectively. The most suitable adsorption temperatures were 298 and 318 K with maximum adsorption capacities of 465.13mg/g for NR and 459.89 mg/g for MG. The adsorption equilibrium results for both dyes follow Langmuir, Freundlich isotherms. The numerical values of the mean free energy $E_a$ of 4.472-5.559 kj/mol and 2.000-2.886 kj/mol for NR and MG respectively indicated physical adsorption. Various thermodynamic parameters, such as ${\Delta}H^{\circ}$, ${\Delta}S^{\circ}$, ${\Delta}G^{\circ}$ and Ea have been calculated. The data showed that the adsorption process is spontaneous and endothermic. The sticking probability model was further used to assess the potential feasibility of the clay mineral as an alternative adsorbent for organic ion pollutants in aqueous solution.

Behaviour of Acidic Gases(SOx, NOx) Adsorption on Aminated PP-g-AAc Ultrafine Fibrous Ion Exchanger (아민화 PP-g-AAc 초극세 이온교환섬유의 산성가스(SOx, NOx) 흡착거동)

  • Choi, Yong-Jae;Choi, Kuk-Jong;Lee, Chang-Soo;Hwang, Taek-Sung
    • Polymer(Korea)
    • /
    • v.33 no.1
    • /
    • pp.72-78
    • /
    • 2009
  • In this study, the behaviour of $SO_2$ and $NO_2$ adsorption on aminated ultrafine fibrous PP-g-AAc ion exchanger was investigated, The amount of adsorbed $SO_2$ increased with increasing the initial concentration of $SO_2$. The adsorption breakthrough time in the low concentration of $SO_2$ was faster than high concentration. The adsorption breakthrough occurred within 60 min. Approximately 80% of $SO_2$ was adsorbed below 100 ppm $SO_2$ and 90% of $SO_2$ over 100 ppm $SO_2$ respectively. The selective adsorption rate for $NO_2$ was lower than that of $SO_2$. The adsorption rate for $SO_2$ was decreased with increasing flow rate and that of $NO_2$ was 60%. The breakthrough occurred within 60 min. The adsorption rate for $SO_2$ was 92% in the 250 mL/g water content. Isotherm adsorption model for $SO_2$ was close to the Langmuir rather than Freundlich model.

Adsorption Characteristics of Carbon Dioxide on Chitosan/Zeolite Composites (키토산/제올라이트 복합체의 이산화탄소 흡착 특성)

  • Hong, Woong-Gil;Hwang, Kyung-Jun;Jeong, Gyeong-Won;Yoon, Soon-Do;Shim, Wang Geun
    • Applied Chemistry for Engineering
    • /
    • v.31 no.2
    • /
    • pp.179-186
    • /
    • 2020
  • In this study, chitosan/zeolite composites were prepared by using basalt-based zeolite impregnated with aqueous chitosan solution for the adsorptive separation of CO2. The prepared composites were characterized by scanning electron microscopy (SEM), Fourier-transform infrared (FT-IR) spectroscopy, thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), and nitrogen adsorption analysis. In addition, the adsorption equilibrium isotherms for CO2 and N2 were measured at 298 K using a volumetric adsorption system, and the results were analyzed by applying adsorption isotherm equations (Langmuir, Freundlich, and Sips) and energy distribution function. It was found that CO2 adsorption capacities were well correlated with the structural characteristics of chitosan and zeolite, and the ratio of elements [N/C, Al/(Si + Al)] formed on the surface of the composite. Moreover, the CO2/N2 adsorption selectivity was calculated under the mixture conditions of 15 V : 85 V, 50 V : 50 V, and 85 V : 15 V using the Langmuir equation and the ideal adsorption solution theory (IAST).