DOI QR코드

DOI QR Code

A New Approach on Adsorption and Transport of Cesium in Organic Matter-rich Soil and Groundwater Environments Changed by Wildfires

산불로 인해 변화하는 토양지하수 환경에서의 세슘 흡착 및 거동에 대한 새로운 고찰

  • Bae, Hyojin (Research Center for Geochronology and Isotope Analysis, Korea Basic Science Institute) ;
  • Choung, Sungwook (Research Center for Geochronology and Isotope Analysis, Korea Basic Science Institute) ;
  • Jeong, Jina (Department of Geology, Kyungpook National University)
  • 배효진 (한국기초과학지원연구원 환경분석연구부) ;
  • 정성욱 (한국기초과학지원연구원 환경분석연구부) ;
  • 정진아 (경북대학교 지질학과)
  • Received : 2021.11.18
  • Accepted : 2022.01.11
  • Published : 2022.01.30

Abstract

This study was conducted to investigate the effect of soil and groundwater environment changed by wildfire on cesium adsorption and transport. Soil samples (A, B) used in the study were collected from Gangwon-do, where wildfires frequently occur, and the adsorption and transport of cesium in the samples were evaluated through batch and column experiments. As a result of the batch adsorption experiments with various concentrations of cesium (CW ≈ 10~105 ㎍/L), the adsorption distribution coefficient (Kd) of cesium was higher in sample A for all observed concentrations. It means that the adsorption capacity of sample A was higher to that of sample B, which was also confirmed through the parameters of adsorption isotherm models (Freundlich and Langmuir model) applied to the experimental results. The fixed bed column experiments simulated the actual soil and groundwater environment, and they showed that cesium was retarded approximately 43 and 27 times than a nonreactive tracer in sample A and B, respectively. In particular, a significant retardation occurred in the sample A. Although sample A contains little clays, total organic carbon (TOC) contents were 3 times greater than sample B. These results imply that particulate organic matter caused by wildfire might influence the adsorption and transport of cesium in the organic matter-rich soil and groundwater environment.

Keywords

Acknowledgement

본 연구는 정부의 재원으로 한국연구재단의 지원을 받아 수행되었습니다(NRF-2019R1A2C1004891).

References

  1. Ballova, S., Pipiska, M., Fristak, V., Duriska, L., Hornik, M., Kanuchova, M., and Soja, G. (2020). Pyrogenic carbon for decontamination of low-level radioactive effluents: Simultaneous separation of 137Cs and 60Co, Progress in Nuclear Energy, 129, 103484. https://doi.org/10.1016/j.pnucene.2020.103484
  2. Borchard, N., Ladd, B., Eschemann, S., Hegenberg, D., Moseler, B. M., and Amelung, W. (2014). Black carbon and soil properties at historical charcoal production sites in Germany, Geoderma, 232, 236-242. https://doi.org/10.1016/j.geoderma.2014.05.007
  3. Bouzidi, A., Souahi, F., and Hanini, S. (2010). Sorption behavior of cesium on Ain Oussera soil under different physicochemical conditions, Journal of Hazardous Materials, 184(1-3), 640-646. https://doi.org/10.1016/j.jhazmat.2010.08.084
  4. Cornell, R. (1993). Adsorption of cesium on minerals: A review, Journal of Radioanalytical and Nuclear Chemistry, 171(2), 483-500. https://doi.org/10.1007/BF02219872
  5. Cornelissen, G., Gustafsson, O., Bucheli, T. D., Jonker, M. T., Koelmans, A. A., and Van Noort, P. C. (2005). Extensive sorption of organic compounds to black carbon, coal, and kerogen in sediments and soils: Mechanisms and consequences for distribution, bioaccumulation, and biodegradation, Environmental Science & Technology, 39(18), 6881-6895. https://doi.org/10.1021/es050191b
  6. Cygan, R. T., Nagy, K. L., Brady, P. V., and Jenne, E. A. (1998). Molecular models of cesium sorption on kaolinite, Adsorption of Metals by Geomedia, Academic Press, New York, 383-399.
  7. Dumat, C., Cheshire, M. V., Fraser, A. R., Shand, C. A., and Staunton, S. (1997). The effect of removal of soil organic matter and iron on the adsorption of radiocaesium, European Journal of Soil Science, 48(4), 675-683. https://doi.org/10.1046/j.1365-2389.1997.00114.x
  8. Durrant, C. B., Begg, J. D., Kersting, A. B., and Zavarin, M. (2018). Cesium sorption reversibility and kinetics on illite, montmorillonite, and kaolinite, Science of the Total Environment, 610, 511-520. https://doi.org/10.1016/j.scitotenv.2017.08.122
  9. Fan, Q. H., Tanaka, M., Tanaka, K., Sakaguchi, A., and Takahashi, Y. (2014). An EXAFS study on the effects of natural organic matter and the expandability of clay minerals on cesium adsorption and mobility, Geochimica et Cosmochimica Acta, 135, 49-65. https://doi.org/10.1016/j.gca.2014.02.049
  10. Fan, Q., Yamaguchi, N., Tanaka, M., Tsukada, H., and Takahashi, Y. (2014). Relationship between the adsorption species of cesium and radiocesium interception potential in soils and minerals: An EXAFS study, Journal of Environmental Radioactivity, 138, 92-100. https://doi.org/10.1016/j.jenvrad.2014.08.009
  11. Goss, M., Swain, D. L., Abatzoglou, J. T., Sarhadi, A., Kolden, C. A., Williams, A. P., and Diffenbaugh, N. S. (2020). Climate change is increasing the likelihood of extreme autumn wildfire conditions across California, Environmental Research Letters, 15(9), 094016. https://doi.org/10.1088/1748-9326/ab83a7
  12. Hamilton, T. F., Martinelli, R. E., Kehl, S. R., Hayes, M. H., Smith, I. J., Peters, S. K., Tamblin, M. W., Schmitt, C. L., and Hawk, D. (2016). A preliminary assessment on the use of biochar as a soil additive for reducing soil-to-plant uptake of cesium isotopes in radioactively contaminated environments, Journal of Radioanalytical and Nuclear Chemistry, 307(3), 2015-2020. https://doi.org/10.1007/s10967-015-4520-8
  13. Hu, B., Ai, Y., Jin, J., Hayat, T., Alsaedi, A., Zhuang, L., and Wang, X. (2020). Efficient elimination of organic and inorganic pollutants by biochar and biochar-based materials, Biochar, 2(1), 47-64. https://doi.org/10.1007/s42773-020-00044-4
  14. Hwang, J., Choung, S., Park, C. S., Han, J. H., and Jeon, S. (2016). Application of Yeongdong illite to remove radiocesium for severe nuclear accidents, Journal of the Mineralogical Society of Korea, 29(4), 229-238. [Korean Literature] https://doi.org/10.9727/jmsk.2016.29.4.229
  15. Jeon, S., Choung, S., Han, W. S., Jang, K. S., Shin, W., and Hwang, J. (2017). Physicochemical and adsorptive properties of black carbon for radioactive cesium under various combustion conditions and tree species, Journal of Korean Society on Water Environment, 33(6), 689-695. [Korean Literature] https://doi.org/10.15681/KSWE.2017.33.6.689
  16. Kanwar, S., Shukla, P., and Kumar, S. A. (2021). Bio-medical applications of different radionuclides, Annals of the Romanian Society for Cell Biology, 11676-11681.
  17. Koelmans, A. A., Jonker, M. T., Cornelissen, G., Bucheli, T. D., Van Noort, P. C., and Gustafsson, O. (2006). Black carbon: The reverse of its dark side, Chemosphere, 63(3), 365-377. https://doi.org/10.1016/j.chemosphere.2005.08.034
  18. Koning, A. and Comans, R. N. (2004). Reversibility of radiocaesium sorption on illite. Geochimica et cosmochimica acta, 68(13), 2815-2823. https://doi.org/10.1016/j.gca.2003.12.025
  19. Korea Forest Service. (2018). 2017 An annual report on forest fire statistics, 11-1400000-000424-10, Korea Forest Service, 31-170. [Korean Literature]
  20. Lee, J., Park, S. M., Jeon, E. K., and Baek, K. (2017). Selective and irreversible adsorption mechanism of cesium on illite, Applied Geochemistry, 85, 188-193. https://doi.org/10.1016/j.apgeochem.2017.05.019
  21. Li, H., Dong, X., da Silva, E. B., de Oliveira, L. M., Chen, Y., and Ma, L. Q. (2017). Mechanisms of metal sorption by biochars: Biochar characteristics and modifications, Chemosphere, 178, 466-478. https://doi.org/10.1016/j.chemosphere.2017.03.072
  22. McKinley, J. P., Zachara, J. M., Heald, S. M., Dohnalkova, A., Newville, M. G., and Sutton, S. R. (2004). Microscale distribution of cesium sorbed to biotite and muscovite, Environmental Science & Technology, 38(4), 1017-1023. https://doi.org/10.1021/es034569m
  23. Park, S. M., Alessi, D. S., and Baek, K. (2019). Selective adsorption and irreversible fixation behavior of cesium onto 2: 1 layered clay mineral: A mini review, Journal of Hazardous Materials, 369, 569-576. https://doi.org/10.1016/j.jhazmat.2019.02.061
  24. Park, S. M., Lee, J., Kim, Y. H., Lee, J. S., and Baek, K. (2017). Influence of physicochemical properties on cesium adsorption onto soil, Journal of Soil and Groundwater Environment, 22(1), 27-32. [Korean Literature] https://doi.org/10.7857/JSGE.2017.22.1.027
  25. Pipiska, M., Ballova, S., Fristak, V., Duriska, L., Hornik, M., Demcak, S., Holub, M., and Soja, G. (2020). Assessment of pyrogenic carbonaceous materials for effective removal of radiocesium, Key Engineering Materials, 838, 103-110. https://doi.org/10.4028/www.scientific.net/kem.838.103
  26. Reddy, D. H. K., and Lee, S. M. (2014). Magnetic biochar composite: facile synthesis, characterization, and application for heavy metal removal, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 454, 96-103. https://doi.org/10.1016/j.colsurfa.2014.03.105
  27. Rogers, H., Bowers, J., and Gates-Anderson, D. (2012). An isotope dilution-precipitation process for removing radioactive cesium from wastewater, Journal of Hazardous Materials, 243, 124-129. https://doi.org/10.1016/j.jhazmat.2012.10.006
  28. Ruffault, J., Curt, T., Martin-StPaul, N. K., Moron, V., and Trigo, R. M. (2018). Extreme wildfire events are linked to global-change-type droughts in the northern Mediterranean, Natural Hazards and Earth System Sciences, 18(3), 847-856. https://doi.org/10.5194/nhess-18-847-2018
  29. Saarnio, S., Heimonen, K., and Kettunen, R. (2013). Biochar addition indirectly affects N2O emissions via soil moisture and plant N uptake, Soil Biology and Biochemistry, 58, 99-106. https://doi.org/10.1016/j.soilbio.2012.10.035
  30. Santin, C., Doerr, S. H., Preston, C. M., and Gonzalez Rodriguez, G. (2015). Pyrogenic organic matter production from wildfires: A missing sink in the global carbon cycle, Global Change Biology, 21(4), 1621-1633. https://doi.org/10.1111/gcb.12800
  31. Santin, C., Knicker, H., Fernandez, S., Menendez-Duarte, R., and Alvarez, M. A. (2008). Wildfires influence on soil organic matter in an Atlantic mountainous region (NW of Spain), Catena, 74(3), 286-295. https://doi.org/10.1016/j.catena.2008.01.001
  32. Schmidt, M. W. I., Skjemstad, J. O., Gehrt, E., and Kogel-Knabner, I. (1999). Charred organic carbon in German chernozemic soils, European Journal of Soil Science, 50(2), 351-365. https://doi.org/10.1046/j.1365-2389.1999.00236.x
  33. Shi, G., Yan, H., Zhang, W., Dodson, J., Heijnis, H., and Burrows, M. (2021). Rapid warming has resulted in more wildfires in northeastern Australia, Science of the Total Environment, 771, 144888. https://doi.org/10.1016/j.scitotenv.2020.144888
  34. Soderlund, M., Hakanen, M., and Lehto, J. (2016). Sorption of cesium on boreal forest soil I: The effect of grain size, organic matter and mineralogy, Journal of Radioanalytical and Nuclear Chemistry, 309(2), 637-645.
  35. Staunton, S., Dumat, C., and Zsolnay, A. (2002). Possible role of organic matter in radiocaesium adsorption in soils, Journal of Environmental Radioactivity, 58(2-3), 163-173. https://doi.org/10.1016/S0265-931X(01)00064-9
  36. Steinhauser, G., Brandl, A., and Johnson, T. E. (2014). Comparison of the Chernobyl and Fukushima nuclear accidents: a review of the environmental impacts, Science of the Total Environment, 470, 800-817. https://doi.org/10.1016/j.scitotenv.2013.10.029
  37. Sung, M. K., Lim, G. H., Choi, E. H., Lee, Y. Y., Won, M. S., and Koo, K. S. (2010). Climate change over Korea and its relation to the forest fire occurrence, Atmosphere, 20(1), 27-35. [Korean Literature]
  38. Tameta, Y., Tamura, R., Kimura, M., Sasamoto, M., Kamei-Ishikawa, N., and Ito, A. (2021). Effect of dissolved soil organic matter on cesium adsorption by zeolite and illite, Journal of Environmental Management, 289, 112477.
  39. Wang, F., Sun, H., Ren, X., Liu, Y., Zhu, H., Zhang, P., and Ren, C. (2017). Effects of humic acid and heavy metals on the sorption of polar and apolar organic pollutants onto biochars, Environmental Pollution, 231, 229-236. https://doi.org/10.1016/j.envpol.2017.08.023
  40. Wang, H., Yuan, L., and An, J. (2017). Crystallographic characteristics of hydroxylapatite in hard tissues of cololabis saira, Crystals, 7(4), 103. https://doi.org/10.3390/cryst7040103
  41. Wang, R., Zhang, Y., Cerda, A., Cao, M., Zhang, Y., Yin, J., Jiang, Y., and Chen, L. (2017). Changes in soil chemical properties as affected by pyrogenic organic matter amendment with different intensity and frequency, Geoderma, 289, 161-168. https://doi.org/10.1016/j.geoderma.2016.12.006
  42. Yu, L., Tang, J., Zhang, R., Wu, Q., and Gong, M. (2013). Effects of biochar application on soil methane emission at different soil moisture levels, Biology and Fertility of Soils, 49(2), 119-128. https://doi.org/10.1007/s00374-012-0703-4